dotalVivee

“ ' Multiprocess Debugger

User’s Guide
Version 3.8.1
December, 1998



Copyright © 1996-1998 by Dol phin Inteconnect Solutions, Inc. All rights reserved.
Copyright © 1993-1996 by BBN Systems and Technologies, adivision of BBN Corporation.

No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwisewithout the prior written permission of Dol phin Interconnect
Solutions, Inc. (Dolphin Interconnect).

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rightsin Technical Data and Computer Software clause at DFARS 252.227-7013.

Dolphin Interconnect has prepared this manual for the exclusive use of its customers, personnel, and licensees. The
information in this manual is subject to change without notice, and should not be construed as acommitment by Dolphin
Interconnect. Dol phin Interconnect assumes no responsibility for any errors that appear in this document.

TotalView, TimeScan, and Gist are trademarks of Dolphin Interconnect Solutions, Inc.

All other brand names are the trademarks of their respective holders.

Revision 3.8.1: Printed December 1998



About This Guide

This guide describes how to use TotalView, a source-level and machine-level
debugger with an easy-to-use interface (based on the X Window System) and
support for debugging multiprocess programs. The guide assumes that you are
familiar with the C programming language, UNIX operating systems, the X
Window System, and the processor architecture of the platform on which you're
running TotalView.

This guide covers the general use of TotalView on any platform. Most of the
examplesand illustrationsin thisguide show TotalView running on aworkstation.
To learn about the specifics of running TotalView on your platform, refer to
Appendix A, “Compilers and Environments,” on page 303, Appendix B,
“Operating Systems,” on page 321, and Appendix C, “ Architectures,” on page 333.

Getting Started

To get started quickly with Total View:

e Install the software.

The TotalView Installation Guide providesinstructions.

* Learnthebasics of TotaView.

Chapter 2, “TotalView Basics,” on page 15 and Chapter 6, “Debugging
Programs,” on page 115 provide instructions.

TotalView User’s Guide iii



About This Guide

Supported Platforms

TotalViewisavailablefor avariety of platformsand can beused to debug programs
on the native platform or on remote systems, such as parallel processors,
supercomputers, or digital signal processor boards.

If TotalView is not yet available for your system configuration, please contact
Dolphin Interconnect about porting Total View to suit your needs:

ToolWorks Group

Dolphin Interconnect Solutions, Inc.

111 Speen Street

Framingham, MA 01701-2090

Internet E-mail: toolwor ks@dolphinics.com
1-800-856-3766 in the United States

(+1) 508-875-3030 worldwide

Reporting Problems

Please contact usif you have problemsinstalling Total View, questionsthat are not
answered in the product documentation or on our Web site, or suggestionsfor new
features or improvements.

Our Internet E-Mail addressis: tv-support@dolphinics.com
1-800-856-3766 in the United States
(+1) 508-875-3030 worldwide

If you are reporting a problem, please include the following information:
* Theversion of TotaView

» The platform on which you're running Total View
» Anexamplethat illustrates the problem
» Arecord of the sequence of eventsthat led to the problem

See the TotalView Release Notes for complete instructions on how to report
problems.

iv TotaView User's Guide



Typographical Conventions

Typographical Conventions

This guide uses the following conventions to present information:

bold
italic

typewiter
Control-Z

nZ
EscZ

[]

(©)

An exact filename, command, or user input.

In examplesindicates a variable or avalue that you
supply. Intext, emphasizesimportant wordsor phrases.

Computer outpuit.

Pressthe keyssimultaneously; for example, hold down
the Control key and pressthe Z key.

Shorthand for Control-Z.

Press the first key and then the second; for example,
press the Escape key and then pressthe Z key.

Shorthand for Meta-l. (The Metakey varieswith your
platform; usually it isthe Alt key.)

Optional itemsin command syntax descriptions.
Repetition of the previous command or input.

The keyboard equivalent for acommand in
parentheses; for example, Go Group (G).

TotalView User's Guide v



About This Guide

vi TotalView User's Guide



Contents

List of Figuresxix

List of Tablesxxiii

CHAPTER 1.
Introduction 1
TotaView’s Advantages 2
TotalView’s Windows 4
Examining Source and Machine Code 6
Controlling Processes and Threads 6
Using Action Paints 7
Examining and Manipulating Data 8
Visualizing Array Data 9
Distributed Debugging 10
Multiprocess Programs 12
Multithreaded Programs 13
Context-Sensitive Help 14
CHAPTER 2:
TotalView Basics 15
Compiling Programs 16
Starting TotalView 16
Using the Mouse Buttons 17
Using Menu and Keyboard Commands 18

TotalView User's Guide vii




Contents

Getting Help 19

Using the Primary Windows 20
Starting A Process 21
Sizing Process Window Panes 23
Navigating in the Process Window 24
Navigating in the Root Window 24
The Process Window Stack 25

Scrolling Windows and Fields 25
Scrolling Windows 25
Scrolling Multiline Fields 27

Diving into Objects 28

Editing Text 29

Searching for Text 31

Using the Spelling Corrector 32

Saving the Contents of Windows 32
Exiting from the TotalView Debugger 33

CHAPTER 3:
Setting Up a Debugging Session 35
Compiling Programs 36
Starting the Total View Debugger 37

Loading Executables 38
Loading a New Executable 38
Reloading a Recompiled Executable 39

Attaching to Processes 40
Attaching Using Show All Unattached Processes 40
Attaching Using New Program Window 42

Detaching from Processes 43
Examining a Core File 43

Determining the Status of Processes and Threads 44
Process Status 45
Thread Status 45
Unattached Process States 46
Attached Process States 47

Handling Signals 48
Setting Search Paths 52
Setting Command Arguments 54

viii  TotalView User's Guide



CHAPTER 4:

CHAPTER 5:

Specifying Environment Variables 55
Setting Input and Output Files 56
Monitoring TotalView Sessions 57

Setting Up Remote Debugging Sessions 59

Debugging Remote Processes 60
L oading a Remote Executable 60
Attaching to a Remote Process 61

Connecting to Remote Machines 63

Starting the Debugger Server for Remote Debugging 64
The Auto-Launch Feature 64
Auto-Launch Options 65
The Server Launch Command 66
Changing the rsh Command 67
Changing the Arguments 68
The Connection Timeout 68
Disabling Auto-Launch 69
Changing the Options 69
Starting the Debugger Server Manually 70

Debugging Over a Serid Line 72
Start the Total View Debugger Server 73
Starting TotalView on a Seria Line 73
New Program Window 74

Setting Up Parallel Debugging Sessions 75
Debugging MPI Applications 76

Debugging MPICH Applications 77
Starting Total View on an MPICH Job 77
Attaching to an MPICH Job 79
MPICH P4 procgroup Files 80

Debugging Digital MPI Applications 81
Starting TotalView on aDigital MPI Job 81
Attaching to a Digital MPI Job 81

Debugging IBM MPI (PE) Applications 82
Preparing to Debug a PE Application 82
Starting Total View on a PE Job 83
Setting Breakpoints 84
Starting Parallel Tasks 84

Contents

TotalView User's Guide ix



Contents

Attaching to a PE Job 85
Attach from a Node Running poe 85
Attach from Node Not Running poe 85

Debugging SGI MPI Applications 86
Starting Totalview with SGI MPI 86
Attaching to an SGI MPI Job 86

Displaying Message Queue State 87
Message Queue Display Basics 87
Message Operations 89

MPI Process Diving 90

MPI Buffer Diving 90

Pending Receive Operations 91

Unexpected Messages 92

Pending Send Operations 93
MPI Debugging Troubleshooting 94

Debugging PYM and DPVM Applications 95

Supporting Multiple Sessions 95

Setting Up ORNL PVM Debugging 96

Starting an ORNL PVM Session 96

Starting aDPVM Session 98

PVM/DPVM Automatic Process Acquisition 99

Attaching to PVM/DPVM Tasks 100

Reserved Message Tags 102

Debugging Dynamic Libraries 102

Cleanup of Processes 102

Debugging Portland Group, Inc. (PGI) HPF Applications 103

Installing TotalView for HPF 104
Dynamically Loaded Library 104

Setting Up PGHPF Compiler Defaults 105

Setting Up MPICH 105

Setting Total View Defaults 106

Compiling HPF for Debugging 106

Starting HPF Programs 107
PGHPF smp and rpm libraries 107

Starting HPF Programs with MPICH 107
Workstation Clusters Using MPICH 107
IBM Parallel Environment 107

HPF TotalView Advantages 108

Debugging generated FORTRAN 77 109

Parallel Debugging Tips 110

x TotaView User’'s Guide



CHAPTER 6:

General Parallel Debugging Tips 110
MPICH Specific Debugging Tips 112
IBM PE Specific Debugging Tips 112

Debugging Programs 115

Finding the Source Code for Functions 116
Resolving Ambiguous Names 117

Finding the Source Code for Files 119
Source File Extensions 119

Examining Source and Assembler Code 120
Current Stack Frame 122
Editing Source Text 122
Changing the Editor Launch String 122
Interpreting Status and Control Registers 124
Starting Processes and Threads 124
Creating a Process without Starting it 125
Creating a Process by Single-Stepping 125
Stopping Processes and Threads 127
Holding and Releasing Processes 128
Examining Process Groups 129
Types of Process Groups 129
Displaying Process Groups 130
Changing Program Groups 131
Finding Active Processes 132
Setting a Breakpoint 133
Single-Stepping 133
Process-Level Single-Stepping 134
Group-Level Single-Stepping 134
Thread-Level Single-Stepping 135
Thread-Level Control 135
Selecting Source Lines 136
Single-Step Commands 137
Stepping Into Functions Calls 137
Stepping Over Function Calls 138
Executing to a Selected Line 138
Executing to the Completion of a Function 139

Displaying Thread and Process Locations 140

Contents

TotalView User's Guide  xi



Contents

Continuing with a Specific Signal 142
Setting the Program Counter 143
Deleting Processes 144

Restarting Programs 145

CHAPTER 7:
Examining and Changing Data 147

Displaying Variable Windows 148
Displaying Local Variables and Registers 148
Displaying a Global Variable 149
Displaying All Global Variables 149
Displaying Areas of Memory 150
Displaying Machine Instructions 151
Closing Variable Windows 152

Diving in Variable Windows 152
Changing the Values of Variables 153

Changing the Data Type of Variables 154
How TotalView Displays C Data Types 154
If You Prefer C Cast Syntax 155
Pointersto Arrays 155
Arrays 156
Typedefs 157
Structures 157
Unions 157
Built-In Type Strings 158
Character arrays (<string> datatype) 160
Areas of memory (<void> datatype) 160
Instructions (<code> data type) 160
Type Casting Examples 161
Example: Displaying the argv Array 161
Example: Displaying Declared Arrays 161
Example: Displaying Allocated Arrays 161
Opaque Type Definitions 162
Changing the Address of Variables 162
Changing Type Strings to Display Machine Instructions 163
Displaying C++ Types 164
Classes 164
Changing Class Typesin C++ 165

Displaying Fortran Types 166

xii  TotalView User’'s Guide



CHAPTER 8:

Displaying Fortran Common Blocks 166

Displaying Fortran Module Data 167

Debugging Fortran 90 Modules 168

F90 User Defined Type 169

F90 Deferred Shape Array Type 169

F90 Pointer Type 170

Displaying Large Arrays 171
Displaying Array Slices 172

Slice Descriptions 172

Strides 174

Using Slicesin the Variable Command 176

Displaying a Variable in All Processes or Threads 177
Diving in aLaminated Pane 179
Editing aLaminated Variable 179
Visuaizing a Laminated Data Pane 179

Visualizing Array Data 180
Displaying Mutex Information 181
Displaying Condition Variable Information 184

Setting Action Points 187
Action Points 188

Setting Breakpoints 190
Setting
Source-Level Breakpoints 190
Selecting Ambiguous Source Lines 190
Diving into Ambiguous Source Lines 192
Toggling Breakpoints at Locations 193
Toggling Breakpoints at Ambiguous Locations 195
Setting Machine-Level Breakpoints 196
Thread-Specific Breakpoints 197
Breakpoints for Multiple Processes 197
Breakpoint for Programs that fork()/execve() 199
Processes That Call fork() 199
Processes That Call execve() 199
Example: Multiprocess Breakpoint 200

Process Barrier Breakpoints 201
Process Barrier Breakpoint States 201
Setting a Process Barrier Breakpoint 201
Releasing Processes from Process Barrier Points 203

Contents

TotalView User’'s Guide  xiii



Contents

Toggling Between a Breakpoint and a Process Barrier Point 204
Deleting a Process Barrier Point 204
Changes when Setting and Clearing a Barrier Point 204

Defining Evaluation Points 205
Setting Evaluation Points 206
Setting Conditional Breakpoints 207
Patching Programs 207
Conditionally Patching Out Code 208
Patching In a Function Call 208
Correcting Code 208
Interpreted vs. Compiled Expressions 209
Interpreted expressions 209
Compiled expressions 209
Defining and Using Event Points 210

Controlling Action Points 211
Displaying the Action Points Window 211
Displaying the Action Point Options Dialog 212
Commands for Controlling Action Points 212

Saving Action Pointsin aFile 215

Evaluating Expressions 215

Writing Code Fragments 218

Intrinsic Variables 218

Built-In Statements 219

C Constructs Supported 221
Syntax 221
Data Types and Declarations 221
Statements 221

Fortran Constructs Supported 222
Syntax 222
Data Types and Declarations 223
Statements 223

Writing Assembler Code 224

CHAPTER 9:
Visualizing Data 231
How the Visualizer Works 232
Configuring TotalView to Launch the Visualizer 234
Data Typesthat TotalView Can Visualize 236
Visualizing Data from the Variable Window 237

xiv  TotaView User's Guide



CHAPTER 10:

CHAPTER 11:

CHAPTER 12

CHAPTER 13:

APPENDIX A:

Visualizing Datain Expressions 239
Visualizer Animation 240

The TotalView Visualizer 241
Directory Window 242
Data Windows 244

Views of Data 246
Graph DataWindow 247
Displaying Graphs 248
Manipulating Graphs 248
Surface Data Window 249
Displaying Surface Data 251
Manipulating Surface Data 253

Launching the Visualizer from Command Line 254
Adapting a Third Party Visualizer to the TotalView Debugger 256

Troubleshooting 259

X Resources 263

TotalView X Resources 264
Window Locations 264

Visualizer X Resources 283

TotalView Command Syntax 287

Synopsis 287
Description 287
Arguments 287
Options 288

TotalView Debugger Server Command Syntax 299
Options 300

Compilersand Environments 303

Supported Compilers and Environments 304
AlX on RS/6000 Systems 304
Digital UNIX on Digital Alpha Systems 305

Contents

TotalView User's Guide xv



Contents

XVi

APPENDIX B:

IRIX on SGI MIPS Systems 306

SunOS 4 on Solaris Systems 307

SunOS 5 on SPARC Solaris Systems 308
SunOS 5 on Intel-x86 Solaris Systems 309

Compiling with Debugging Symbols 310
AlX on RS/6000 Systems 310
Digital UNIX on Digital Alpha Systems 312
IRIX on SGI MIPS Systems 313
SunOS 4 on Solaris Systems 314
SunOS 5 on SPARC or Intel-x86 Solaris Systems 315

Compiling with Exception Data on Alpha Digital UNIX 316

Linking with the dofork Library 317
AlX on RS/6000 Systems 317
Linking C++ Programs with dbfork 317
AlphaDigital UNIX 318
SunOS 4 318
SunOS 5 SPARC or Intel-x86 319
IRIX6-MIPS 319

Operating Systems 321
Supported Operating Systems 322

Mounting the /proc File System 323
Digital UNIX, SunOS 5, and IRIX 323
Digital UNIX and SunOS5 323
IRIX 324

Swap Space 324
Digital UNIX 325
AlX 326
SunOS 4 326
SunOS5 327
IRIX 328

Shared Libraries 329

Remapping Keys 330

Expression System 330
AlX 330

Digital UNIX 331
Expression on the Power 331

TotalView User’s Guide



APPENDIX C:

Architectures 333

Power 334
Power General Registers 334
Power MSR Register 335
Power Floating-Point Registers 336
Power FPSCR Register 337
Using the Power FPSCR Register 339
Power Floating-Point Format 339

SPARC 340
SPARC General Registers 340
SPARC PSR Register 341
SPARC Floating-Point Registers 341
SPARC FPSR Register 342
Using the SPARC FPSR Register 344
SPARC Floating-Point Format 344

Alpha 345
Alpha General Registers 345
Alpha Floating-Point Registers 346
Alpha FPCR Register 346
Alpha Floating-Point Format 347

MIPS 348
MIPS General Registers 348
MIPS SR Register 349
MIPS Floating-Point Registers 351
MIPS FCSR Register 351
Using the MIPS FCSR Register 353
MIPS Floating-Point Format 353
MIPS Delay Slot Instructions 353

Intel-x86 355
Intel-x86 General Registers 355
Intel-x86 Floating-Point Registers 356
Intel-x86 FPCR Register 357
Using the Intel-x86 FPCR Register 358
Intel-x86 FPSR Register 358
Intel-x86 Floating-Point Format 359

Contents

TotalView User’'s Guide  xvii



Contents

Glossary 361

Index 367

xviii  TotaView User's Guide



List of Figures

Figure 1. Debugging a Remote Program with TotalView 2
Figure 2. Debugging a Distributed Program with TotalView 3
Figure 3. Sample TotalView Session 4

Figure 4. The TotalView Debugger Server 11

Figure 5. Example TotalView Menu and Submenu 18

Figure 6. Root Window 20

Figure 7. Process Window 21

Figure 8. Program Counter 23

Figure 9. The Sizing Cursor 23

Figure 10. Process Window Navigation Controls 24

Figure 11. Scroll Bar 26

Figure 12. Scrollable Multiline Field 27

Figure 13. Editing Cursor 29

Figure 14. Dialog Box for Spelling Corrector 32

Figure 15. New Program Window Dialog Box 38

Figure 16. Unattached Processes Window 41

Figure 17. New Program Window Dialog Box 42

Figure 18. Root Window Showing Process and Thread Status 46
Figure 19. Dialog Box for Set Signal Handling Mode Command 50
Figure 20. Dialog Box for Set Search Directory Command 53
Figure 21. Dialog Box for Set Command Arguments Command 54
Figure 22. Environment Variables Dialog Box 56

Figure 23. Dialog Box for Input from File Command 57

Figure 24. Event Log Window 58

TotalView User's Guide Xix



List of Figures

Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.

xx TotalView User's Guide

New Program Window Dialog Box 60

Remote Host Connection 63

Auto-Launch Feature 65

Dialog Box for Launching Debugger Server 69
Manual Launching of Debugger Server 71
TotalView Debugging Session over a Seria Line 72
New Program Window Dialog Box 74

Dialog Box for Stopping Spawned Processes 78
Processes that TotalView doesn't own Window 79
Parallel Tasks Dialog Box 84

Message State Window 88

Message State Pending Receive Operation 91
Message State Unexpected Messages 92

Message State Pending Send Operation 93

PVM Tasks and Configuration Window 101

Block Distributed Array on Three Processes 109
Function Name Dialog 116

Dialog for Resolving Ambiguous Function Names 117
Different Ways to Display Assembler Code 121
Example of Program Groups and Share Groups 130
Process Groups Window 130

Single Process Group Window 131

Dialog for Changing Process Groups 132

Dialog for Resolving Ambiguous Source Lines 136
Dimmed Process Information in the Root Window 141
Diving into Local Variables and Registers 148
Variable Window for a Global Variable 149

Globa Variables Window 150

Variable Window for Areaof Memory 151
Variable Window with Machine Instructions 151
Nested Dives 152

Displaying Nested C++ Classes 164

C++ Type Cast to Base Class Dialog Box 165



List of Figures

Figure 58. C++ Type Cast to Derived Class Dialog Box 165

Figure 59. Divinginto Common Block List in Stack Frame Pane 166
Figure 60. Fortran Modules Window 167

Figure 61. Fortran 90 User Defined Type 169

Figure 62. F90 Pointer Value 171

Figure 63. Slice Displaying the Four Corners of an Array 174
Figure 64. Fortran Array with Inverse Order and Limited Extent 175
Figure 65. Variable Window for array2 176

Figure 66. Laminated Scalar Variable 177

Figure 67. Laminated Variable at Different Addresses 178

Figure 68. Laminated Array and Structure 179

Figure 69. Mutex Info Window 181

Figure 70. Mutex DataWindow 183

Figure 71. Condition Variable Window 184

Figure 72. Action Point Symbols 189

Figure 73. Breakpoint Symbol 190

Figure 74. Ambiguous Source Line Selection Dialog Box 191
Figure 75. Ambiguous Source Line Dive Dialog Box 192

Figure 76. Toggle Breakpoint at Location Dialog Box 193

Figure 77. Ambiguous Function Name Dialog Box 195

Figure 78. Action Point Options Dialog Box 198

Figure 79. Action Point Options Dialog Box 202

Figure 80. Process Barrier Breakpoint in Process and Root Windows 203
Figure 81. Stopped Execution of Compiled Expression 210

Figure 82. Action Points Window 211

Figure 83. Action Point Options Dialog Box 212

Figure 84. Sample Expression Window 216

Figure 85. ASM Button in Expression Window 224

Figure 86. TotalView Visualizer Connection 232

Figure 87. TotalView Visuaizer Relationships 233

Figure 88. The Visualizer Launch Window 234

Figure 89. A Three Dimensional Array Sliced to Two Dimensions 236
Figure 90. Variable Window 237

TotalView User's Guide  xxi



List of Figures

Figure 91. Visualizer Windows 241

Figure 92. Sample Visualizer Directory Window 242

Figure 93. Sample Visualizer Data Windows 244

Figure 94. Visualizer Graph Data Window 247

Figure 95. Display of Random Data 249

Figure 96. Two Dimensional Surface Visualizer Data Display 250
Figure 97. Three Dimensional Surface Visualizer Data Display 251

xxii TotaView User's Guide



List of Tables

Table 1.
Table 2.

Table 3.
Table 4.
Tableb.

Table6.
Table7.
Table8.
Table9.

Table 10.
Table 11.

Table 12.
Table 13.

Table 14.
Table 15.

Table 16.

Table 17.
Table 18.

Table 19.

Table 20.
Table 21.

Table 22.
Table 23.
Table 24.

Mouse Button Functions 17
Usesfor Diving 28

Field Editor Commands 30
Compiler Considerations 36
Summary of Unattached Process States 47

Summary of Attached Process and Thread States 47
Default Signal Handling Behavior 49
PGHPF Dynamic Library Search Order 104
Source Language Mapping 119
Waysto Display Source and Assembler Code 120
Common Type Strings 155

Built-In Type Strings 158
Breakpoint at Location Actions 194

Setting Breakpoints in Multiprocess Programs 200

Clearing, Disabling, Enabling, Suppressing, and Unsuppressing Action
Points 213

Intrinsic Variables 218

Built-In Statements That Can Be Used in Expressions 219
TotalView Assembler Operators 225

TotalView Assembler Pseudo Ops 226

$visualize examplesfor C and Fortran 239
Directory Window Menu Commands 243

Data Window Menu Commands 245
Graph Data Window Options Dialog 248
Graph Data Window Manipulations 248

TotalView User's Guide  xxiii




List of Tables

Table 25. Surface Data Window Options 252

Table 26. Surface Data Window Menu Commands 253

Table 27. Surface Data Window Manipulations 253

Table 28. Data-Set Header Fields 256

Table 29. Symptoms and Solutions 259

Table 30. C++ Demangling Command Line Options 290

Table 31. Supported Compilers and Environments on AIX 304

Table 32. Supported Compilers and Environments on Digital UNIX 305
Table 33. Supported Compilers and Environmentson IRIX 306

Table 34. Supported Compilers and Environments on SunOS 4 307
Table 35. Supported Compilers and Environments on SunOS 5 SPARC 308
Table 36. Supported Compilers and Environments on SunOS 5 x86 309
Table 37. Compiling with Debugging Symbols on AlX 310

Table 38. Compiling with Debugging Symbols on Digital UNIX 312
Table 39. Compiling with Debugging Symbols on IRIX-MIPS 313

Table 40. Compiling with Debugging Symbols on SunOS4 314

Table 41. Compiling with Debugging Symbols on SunOS5 315

Table 42. Commands for Determining Whether /proc is Mounted 323
Table 43. Commands for Automatically Mounting /proc File System 324

Table 44. Power General Purpose Integer Registers 334
Table 45. Power MSR Register Bit Settings 335

Table 46. Power Floating-Point Registers 336
Table 47. Power FPSCR Register Bit Settings 337
Table 48. SPARC General Registers 340

Table 49. SPARC PSR Register Bit Settings 341

Table 50. SPARC Floating-Point Registers 341
Table 51. SPARC FPSR Register Bit Settings 342
Table 52. Alpha General Purpose Integer Registers 345
Table 53. Alpha Floating-Point Registers 346
Table 54. Alpha FPCR Register Bit Settings 346
Table 55. MIPS Genera (Integer) Registers 348
Table 56. MIPS SR Register Bit Settings 349
Table 57. MIPS Floating-Point Registers 351
Table 58. MIPS FCSR Register Bit Settings 351
Table 59. Intel-x86 General Registers 355

Table 60. Intel-x86 Floating-Point Registers 356

xxiv  TotalView User’'s Guide



List of Tables

Table 61. Intel-x86 FPCR Register Bit Settings 357
Table 62. Intel-x86 FPSR Register Bit Settings 358

TotalView User's Guide  xxv



List of Tables

xxvi TotalView User’'s Guide



CHAPTER 1:
| ntroduction

The TotalView debugger is part of a suite of software development tools for
debugging, analyzing, and tuning the performance of programs, including
multiprocess multithreaded programs. In addition to Total View, you can purchase
the TimeScan Performance Analyzer to generate and analyze event logs. This
chapter highlights the features of TotalView and includes the following sections:

» TotalView’ s advantages

* TotalView’s windows

» Examining source and machine code

» Controlling processes and threads

» Using Action Points

» Examining and manipulating data

e Visudizing array data

» Distributed debugging

» Debugging multiprocess and multithreaded programs

» Context-sensitive help

TotalView User'sGuide 1



CHAPTER 1: Introduction

TotalView’'s Advantages

TotalView provides many advantages over conventional UNIX debuggers (such
as dbx, gdb, and adb):

* You canlearn TotalView quickly and be more productive because of its

graphical interface (based on the X Window System). Total View’ sinterface
provides windows, pop-up menus, and a context-sensitive help system. You
can enter most commands with the mouse. Further, with TotalView's
interface, you can aready see alot of useful information without entering
any commands.

Y ou can debug multiprocess multithreaded programsbecause Total View can
manage multiple processes, and multiplethreadswithin aprocess. Total View
displays each processin its own window, showing the source code, stack
trace, and stack framefor one or morethreadsin the process. Y ou can display
all process windows simultaneously and perform all debugging tasks across
processes.

Y ou can debug remote programs over the network because of TotalView's
distributed architecture, asshowninFigure 1. Remoteprogramsare programs
that run on a different machine from TotalView, while native programs are
programs that run on the same machine as Total View.

Native debugging

Machine 1
[JotalView
[ | I i Machine 2
4 Native executable |\ | Remote executable |

A
Remote detuggy Network

Figurel. Debugging a Remote Program with TotalView

2 TotaView User's Guide



Machine 1

I TotalView

TotaView’s Advantages

Y ou can debug distributed programs over the network because TotalView
can manage multiple remote programs and multiprocess multithreaded
programs simultaneously, as shown in Figure 2. Distributed programs are
programs that run on a group of separate homogeneous machines.

Distributed debugging

I Nallve executable I

\MM l\m Machine 4

I1Striou execu € IStripu execu €] I1Striou execu €

Network

Figure2. Debugging a Distributed Program with TotalView

Y ou can acquire processes automatically for several popular runtime
libraries, such asHPF, PV M, PE, and MPI. Parallel and distributed programs
run in many processes, and your debugger must know about them for you to
debug them correctly. When you start TotalView in HPF, MPI, PE, or PV M,
TotalView automatically detectsthese processes and attachesto them so you
don’t have to attach to them manually. This processis called automatic
processacquisition. If the processison aremote machine, automatic process
acquisition also automatically starts the TotalView debugger server.

Y ou can write source code fragments within Total View and insert them
temporarily into the program you’ re debugging. On some platforms, you can
write machine code fragments as well. This feature can save you timein
testing bug fixes.

Y ou can debug code that was not compiled with the —g switch or for which
youdon't haveaccesstothe sourcefilebecause Total View providesmachine-
level debugging features.

Y ou can attach to running processes, so you can debug processes that were
not started under TotalView.

TotalView User's Guide 3



CHAPTER 1: Introduction

TotalView'sWindows

TotalView displays extensive information in its windows, as shown in Figure 3.

Root window Process Groups window

S NN (1N TotalView 34,75 SERNSRENEPONE

S List of A1l Process Groups TNSEP7SEE2

4 22008 T filter ¢in ,listen_and_accept)  [iY] 5 process groups. 5]
1/27683 T _in_,listen_and_scoept
474 T Filter.d Cin driver) filtersSharebroup (#d}
1733325 T in .driver filtertProgranbroup (45}
4 20780 T Filter<expro.Ll (in .__start) Filber<expr>, L, 135hareGroup (4143
23WI T An ._start generate:Sharebroup (420}

[N ST generate:FrogranGroup (421}

Process windows Variable window

000 1isten_and_accept2list. £27252. 13 1IN0 NN OO0

Process 244402 filter.l (Stopped)
{at 0x2ff21e88) Tupe: struct sockaddr_in

Field Tupe Value
stn_len u_char #0007 <0x00, or 1)
415 sin_family u_char N0027 {002, or 20
| sin_part. u_short 0x2694 (3876
alive)! sin_addr struct in_addr  (Compound Dbject)
s_addr h_addr_t

000000000 (07
sin_zero <string2[8] "

Function ".listen_and_accept”s
Ox(0002634 (3876}

FP: ort s
FP=2FF22020 | |Local variablest

+__start, o
uz 0x00000000 €0}
list_fd: 0x00000003 €3}
peer_fd: OxFFFRFEFF ¢-13
list_sat {Compound Object}
peer_sa: {Compound Object}
addr_len: 0x000000L0 ¢16)
pid: Ox00005F78 (24440

i Function . listen_and_accept in Tisten.c I 000 00

list_sa.sin_addr.s_add- = INADDR_ANY:
list_sa,sin_port = htons ({short} porti:

list_sa,sin_fanily = AF_INET:

v = bind (Iist_fd, (struct sockaddr %) list s, sizeof (list_sad):

ry = listen {list_fd, 63

For {30 {
26t to_zero ((char ) bpesr_sa, sizeof (peer_sa)ls
addr_len = sizeof {peer_sad:
peer_fd = accept. {list_fd, (struct sockaddr *) bpeer_sa, Saddr_len):
if {peer_fd < 0}

continues
pid = fork(y:
if Clpidy

br :
close (peer_fdis

closs (list_fd);
return {peer_fd)

fction Points

Thread (1)

in _li:

[

line 57 in ,listen_and_sccept+0xe8

Figure3. Sample TotalView Session

4 TotadView User’'s Guide



TotaView’'s Windows

Figure 3 shows an example of a TotalView session containing the following
windows:

Root Lists the name, location (if remote process), process
ID, status, and optionally the list of threads for each
process you are debugging. Liststhe thread ID, status
and current routine executing for each thread.

Process Displays information about a process and a thread
within that process. Displays the stack trace, stack
frame, and sourcecodefor theselectedthreadinaseries
of separate panes. Optionally displays disassembled
machine code or interleaved source code and
disassembled machine code.

Process Groups Displaysthe process groupsfor all of the multiprocess
programs you are debugging.

Variable Displays the address, data type, and value of alocal
variable, register, or global variable. Also displaysthe
values (and optionally, the machine-level instructions)
stored in ablock of memory.

Theprocesswindow providesvery detail ed information about aprocess, including:

» Thename, location (if remote process), process I D, and status of the process

» Thename, location (if remote thread), thread 1D, and status of the selected
thread within the process

» The stack trace for the thread, with the selected routine highlighted
» The stack frame for the selected routine

» The source code for the selected frame (providing the routine was compiled
with source line information) or disassembled machine code

» The current Program Counter (PC) for the selected stack frame, which is
represented by an arrow on the line number of source code

» The breakpoints and evaluation points that are set in the source or machine
code, as shown in the source pane

» Thelist of threads that exist within the process
» Thelist of breakpoints and evaluation points that are set in the process.

TotalView User'sGuide 5



CHAPTER 1: Introduction

Examining Sour ce and Machine Code

TotalView provides the following features for examining your code:

Dive on functions

When you dive on afunction, its source code is displayed in the source code
pane of the process window. See“ Diving into Objects’ on page 28 for more
information.

Search for functions

Y ou can search for functions using a dialog in the process window. See
“Finding the Source Code for Functions’ on page 116 for more information.

Controlling Processes and Threads

For controlling processes and threads, the Total View debugger offersafull range
of functions from the process window.

6 TotaView User's Guide

Start and stop processes and threads

Y ou can start, stop, resume, delete, and restart your program. See page 124,
page 127, and page 144 for information about how to perform these tasks.

Attach to existing processes

TotalView provides awindow for examining processes that are not running
under the debugger’ s control. Attaching to one of these processesis as easy
asdivingonit. See" Attachingto Processes’ on page 40for moreinformation.

Examine core files

When you start TotalView, you can load a core file and examineit in the
same way as any executable. Or, you can load a core file anytime during a
TotalView debugging session. See “Examining a Core File” on page 43 for
more information.



Using Action Points

Change the way TotalView handles signals

TotalView providesadialogfor tailoring how signalsarehandled. Total View
can stop the process and place it in the stopped state, stop the process and
placeit in the error state, send the signal on to the process, or discard the
signal. See “Handling Signals’ on page 48 for details.

Single step

Y ou can single step through your program or step over function calls. You
can also continue execution to a selected source line or instruction and
continue execution until afunction completesexecution. TotalView supports
process level, process group level, and on some systems, thread level single
stepping. See“ Single-Stepping” on page 133 for details.

Reload the executable file
After editing and recompiling a program, you can reload the executablefile.
See “Loading Executables’ on page 38 for more information.

Change the program counter (PC)

Y ou can change the value of the PC to resume execution at adifferent point
in the program. See “ Setting the Program Counter” on page 143 for more
information.

Using Action Points

TotalView providesabroad range of action points: pointsin aprogram whereyou
stop execution or evaluate an expression.

Action points
Y ou can set, delete, enable, disable, suppress, and unsuppress the following
kinds of action points at both the source level and machine level.

» Breakpoints

» Barrier breakpoints

» Conditional breakpoints are breakpoints that occur only if acode
fragment (expression) is satisfied

TotalView User's Guide 7



CHAPTER 1: Introduction

» Evaluation points are points where a code fragment is evaluated
Expressions and code fragments

With the expression eval uation window and eval uation points, you can write
and evaluate fragments of code, including function calls used by the current
process. Depending on the platform, you can write fragmentsin C, C++,
Fortran, or Assembler. On most platforms, TotalView interprets code
fragments, but on some platforms, TotalView compiles the fragments.

See Chapter 8, “Setting Action Points,” on page 187 for more information
about setting action points and writing eval uation expressions.

Examining and M anipulating Data

The Tota View debugger also offers a number of useful functions for examining
and manipulating data in your program:

8 TotaView User's Guide

Diving

Y ou can examine data by diving (clicking the right mouse button) into the
variableor by issuingacommand. Y ou can examinelocal variables, registers,
global variables, machine-level instructions, and areas of memory. In all
cases, the debugger displays the information about the variable, register, or
memory region in a separate variable window. See Diving into Objects’ on
page 28 for more information.

Changing values

Y ou can edit the value of avariable or amemory location to changeit for the
current running process. See* Changing theValuesof Variables’ onpage 153
for more information.

Changing types

Y ou can edit the type strings of variables to display the datain different
formats. See “Changing the Data Type of Variables’ on page 154 for more
information.



Visualizing Array Data

e Laminated variables

Y ou can examinethevalueof avariableacrossmultipleprocessesor multiple
threadsin asingle datawindow. See“ Displaying aVariablein All Processes
or Threads” on page 177 for more information.

Visualizing Array Data

The Tota View debugger allows you to visualize array data in the programs you
aredebugging. Thisgivesyou an overall picture of your dataand helpsyou to find
incorrect data quickly and easily.

The Visualize program runs as a separate process, connecting to TotalView by a
pipe. Youinteract with Total View to choose what to visualize and when to update
theimages, and you interact with the Visualizer program to choose how to display
the data.

Note:  The Visualize program is not available on all platforms.

You can visualize array datain the following ways:

» Visualize (v) variable window menu item

Y ou can visualize the array data displayed in avariable window on demand
by invoking the Visualize (v) menu item. This command gives you avisual
snapshot of the array datalisted in the window. Each time you visualize the
same array data, the visualizer image is updated.

» $visualize expression system built-in statement

Y ou can use the $visualize expression system built-in statement in
expressions called both from the expression eval uation window, and
evaluation action points. The expression system allows you to visualize
several different data-setsfrom asingle expression. Each timetheexpression
is evaluated, the set of images are automatically updated in the Visualizer
program, allowing you to animate the visual representation of your data.

TotalView User'sGuide 9



CHAPTER 1: Introduction

TotalView allows you to use your own visualization program. The data format
generated by TotalView isdescribed in aheader fileincluded with the Total View
distribution. For more information about visualization, see“Visualizing Data’ on
page 231.

Distributed Debugging

TotaView provides a distributed architecture that suits many different operating
environments, including:
* Remote programs running on a separate machine from Total View
 Distributed programs running on a set of homogeneous machines
» Multiprocess programs running on a multiprocessor machine

* Multiprocess programs running on a cluster of separate homogeneous
machines

» Client-server programswith the server running on one machinetype and the
clients running on another machine type

Note:  Distributed debugging currently requires that all machines
have the same machine architecture and operating system

The machine on which Total View isrunning is known as the host machine, while
themachine on which the process being debugged isrunning isknown asthetarget
machine. When the host and target machines are the same, you can use TotalView
as a native debugger. When the host and target machines are separate machines,
you can use Total View as adistributed debugger. When you use TotalView asa
distributed debugger, it startsaprocesson each remotetarget machine. Thisprocess
iscalled the Total View Debugger Server (tvdsvr), and TotalView communicates
with it using standard TCP/IP protocols (see Figure 4).

10 TotaView User’'s Guide



Distributed Debugging

Host machine
[ITotaView
™ Target machine
b (TotalView Debugger Server )
Native executable | | Remote executable |

[ [ Network

Figure4. The TotalView Debugger Server

There are no differencesin debugging distributed programs; Total View offersthe
same set of rich features as with native programs and multiprocess programs.

In addition, on some platforms, TotalView can debug programs that use the HPF,
MPI, IBM Parallel Environment (PE) or Parallel Virtual Machine (PVM) libraries,
which are popular multiprocess programming libraries.

For more information on distributed debugging, refer to:
» “Debugging Remote Processes’ on page 60
» “Debugging MPI Applications’ on page 76
» “Debugging IBM MPI (PE) Applications’” on page 82
» “Debugging PVM and DPVM Applications’ on page 95
» “Debugging Portland Group, Inc. (PGI) HPF Applications’ on page 103

TotalView User's Guide 11



CHAPTER 1: Introduction

Multiprocess Programs

The TotalView debugger has some special features for debugging multiprocess
programs. Note that all of the user interface and debugging features that were
discussed earlier in this chapter are also available for multiprocess programs.

» Separate windows for each process

Each process hasits own process window displaying information for that
particular process. Y ou can monitor the status, thread list, breakpoint list and
source code, for each processin amultiprocess program. Y ou don’'t have to
display al the process windows in a multiprocess program; you can choose
which process windows to open and close.

» Sharing of breakpoints among processes

By setting options on the breakpoint in a parent process, you can control
whether or not the breakpoint is shared among the child processes. Y ou can
also control whether or not all processesin the group stop when any process
inthegroup reachesthebreakpoint. See* Breakpointsfor M ultiple Processes”
on page 197 for more information.

* Processgroups

The Total View debugger treats multiprocess programs as process groups. If
you debug several multiprocess programs at once, you can view information
about all process groups. Y ou also can view information about a particular
multi processprogram by requesting i nformation about itsprocessgroup. Y ou
can start and stop an individual process group. See “ Examining Process
Groups’ on page 129 for more information.

* Process barrier breakpoints

Inaddition to“normal” breakpoints, Total View allowsyou to create process
barrier breakpoints. A process barrier breakpoint (process barrier point) is
just like anormal breakpoint, but it holds processes that reach the barrier
point until all the processesin the group reach it. When the last processin
the group reaches a barrier, all processes in the group are released. While a
processis held, attempts to continue the process do nothing. Thisis useful
for synchronizing a group of processes at the same location. See * Process
Barrier Breakpoints’ on page 201 for more information.

12 TotadView User’'s Guide



Multithreaded Programs

Process group-level single-stepping

TotalView allows you single-step groups of processes with asingle
command. See “ Group-Level Single-Stepping” on page 134 for more
information.

Single event log containing information for all processes

The TotalView debugger logs significant events about each process you are
debugging. Thus, you can view the history of your entire debugging session
by scrolling through the event log window. See “Monitoring Total View
Sessions’ on page 57 for more information.

Automatically attach to child processes

If aprogram callsfork() or execve(), TotalView automatically attaches to
the child processes and includes them in the process group. See* Attaching
to Processes’ on page 40 and “Breakpoint for Programsthat fork()/execve()”
on page 199 for more information.

Multiple symbol tables

If you are debugging more than one executable at atime, TotalView
automatically handles the symbol table for each executable

Multithreaded Programs

Most modern operating systems support running programs with multiple threads
of execution. Theimplementation of threads varies among operating systems, but
most thread implementations share the following characteristics:

Shared address space

The threads share an address space (memory) with other threads. They can
read and write the same variables and can execute the same code.

Private execution context

Each thread has its own set of general-purpose registers and floating-point
registers (if applicable to the processor).

TotalView User's Guide 13



CHAPTER 1: Introduction

* Private execution stack

Each thread has a region of address space reserved for its execution stack.
Thisistypically arange of addresses in the address space reserved for the
thread’ s stack. However, one thread’ s stack can be read and written by other
threads sharing the address space.

* Thread private data

Some operating systems (not all) allow aprogramto “ declare” thread private
data. A program variablethat isdeclared thread private provides each thread
its own copy of the variable. Changes to the variable by one thread are not
seen by the others. Thisfacility usually requires compiler and linker support,
in addition to operating system support.

Total View supports debugging threaded applications on a variety of operating
systems. On most versions of UNIX operating systems that support threads, a
process consists of an address space and alist of one or more threads. Other
operating systemsthat TotalView supportsimplement tasks or threads running in
the memory space of a computer, and have no facilities for multiple processes or
address spaces on a single machine.

Tohandlethisdiversity, Total View implementsageneral model of address spaces
and execution contexts. For conciseness, we use the term thread to mean athread
or task with an execution context, and process to mean an address space or
computer memory that is capable of running one or more threads.

See*Navigating in the Process Window” on page 24 and “ Determining the Status
of Processesand Threads’ on page 44tolearnhow Total View presentsinformation
about threads.

Context-Sensitive Help

Y ou can request help from every window in the Total View debugger. The Help
command displays context-sensitive information about the window or dialog box
you are currently working in or the debugging operation you are currently using.
Thedebugger displaystheinformationin aseparate help window, so you can scroll
through theinformation as you debug your program. Asyou make successive help
requests, the debugger displays the new information in the help window. See
“Getting Help” on page 19.

14 TotadView User’'s Guide



CHAPTER 2:
TotalView Basics

This chapter introduces you to the Total View interface. You'll learn how to:

» Compile your program

» Start TotalView

* Use the mouse buttons and menus
* Getonlinehelp

» Usethe primary windows

» Scroll windows and fields

» Diveinto objects

e Edittext

» Search for text strings

» Usethe spelling corrector

» Savethe contents of windows
» Exit TotalView

TotalView User's Guide 15



CHAPTER 2: TotalView Basics

Compiling Programs

Beforeyou start Total View, compileyour source codewith the—g compiler switch,
which generates debugging information in the symbol table. For example:

% cc —g program—o executable

For moreinformation on compiling your program for Total View, see*Compiling
Programs’ on page 36. On some platforms, additional compiler switches may be
necessary or recommended for effective debugging. For more information, refer
to Appendix A, ” Compilers and Environments,” on page 303.

If necessary, you can debug programs that have not been compiled with the —g
compiler switch or programsfor which you do not have the source code. For more
information, refer to “Examining Source and Assembler Code” on page 120.

Starting TotalView

Depending on the kind of program you are debugging, there are several way to
start TotalView. Inits simplest form, use the totalview command with the name
of your program (filename):

% totalview filename

For more information on starting TotalView, see “ Starting the Total View
Debugger” on page 37.

For information on starting Total View on aparallel debugging session, Chapter 5,
“Setting Up Parallel Debugging Sessions,” on page 75.

For moreinformationonthetotal view command, command options, and command
syntax, refer to Chapter 12, “Total View Command Syntax,” on page 287.

16 TotaView User’'s Guide



Using the Mouse Buttons

Using the M ouse Buttons

The Tota View debugger supports a three-button mouse, as outlined in Table 1.

Tablel. Mouse Button Functions
Default
Button Position Purpose How to Use It
Select Left Select or edit object, Movethe pointer over the object and
scroll in windows and click the button.
panes
Menu Middle Display pop-up menu Move the pointer into the window
and hold down the button.
Select command from Move pointer down the menu until
menu the desired command is highlighted,
and release the button.
L eave menu without Move the pointer off the menu and
selecting command release the button.
Dive Right Diveinto object to Move the pointer over the object and

display information
about it

click the button.

In the tag field area (See Figure 7 on page 21 for an example of the tag field) of
the source code pane, the select button has a special function. By selecting theline
number of an executable line of code, you set abreakpoint at that line. TotalView
displaysa STOP sign in the tag field.

Selecting the STOP sign clears (del etes) the breakpoint. If an evaluation point has
been set (indicated by an EVAL sign), selecting the sign disablesit. For more
information on breakpoints and evaluation points, refer to Chapter 8, “ Setting
Action Points,” on page 187.

TotalView User's Guide 17



CHAPTER 2: TotalView Basics

Using Menu and Keyboard Commands

Each Total View window providesapop-up menu of commandsfor examining and
manipul ating the information displayed in awindow. Figure 5 shows an example
of the process window menu and a submenu. To display a pop-up menu in the
current window, click the middle mouse button.

Many commands have keyboard shortcut (accelerator) keys that are shown in
parenthesesin thismanual . For example, typing theletter g into the window issues
the Close Window (q) command. The keyboard shortcuts are listed on the menu
to the right of the menu command.

Items that appear dimmed on the menu are commands that are currently disabled.

Pop-up menu
Cloze Window q — Submenu
Cloze Windows for Relatives ﬂ
Arguments/Creates/Signal
GosHalt/StepsNextHold ==
Furction/FileYariable k= g:t EEETiggngguﬂzpzzéiés ;
Current/lpdates/Relatives k= Irput from File T <
Display/Directory/Edit k= Output to File e 5
0 /@ /0 / =
Process State Info
Open Expreszion Window
Mo vl edaie
Search for
Eii?ﬁ”lnduw to File KE%? Set Signal Handling Mode,..
'Hléip' | ~p |36t Process Program Growp... L
__J Relnad Executable File
Submenu indicator
L Keyboard commands (shortcuts)
Commands 4 ( )

Figure5. Example TotalView Menu and Submenu

18 TotaView User’'s Guide



Getting Help

The following commands are only available from the keyboard:

Control-C Cancels the single-step operation and other time-
consuming operations, such as searching for a string.

Control-L Refreshes the current window.

Control-Q Exits from the debugger after you confirm.

Control-R Raises the root window.

Shift-Return Exits from the field editor that lets you to edit text in

Totalview windows.

Getting Help

Y ou can request help from any Total View window or dialog box by selecting the
Help command from the pop-up menu or by pressing Contr ol-?. When you request
help, a separate help window appears. To close the help window, select the Close
Window (g) command from the menu.

TotalView User's Guide 19



CHAPTER 2: TotalView Basics

Using the Primary Windows

When you start the Total View debugger with the name of program to debug, two
windows appear:

» Theroot window displaysalist of all the processes that you are debugging,
and optionally alist of thread for each process. Until you start a process, the
root window lists only the name of the program with which you started
TotalView.

* Theprocesswindow displaysthethread list, action point list, and the sel ected
thread of a particular process that you are debugging. The process window
also displays the source code, stack frame, and stack trace of the selected
threadinthat process. Until you start the process, the processwindow displays
only the source code for the program.

Figure 6 and Figure 7 show the root and process windows.

Program name

TotalView version number

Target system

Process ID (pid)

Collapse/Expand toggle

Thread list

WHIH TotalWiew 34,9, 0.3 S sy

— 7 27542111 Shxzort_t {6 threads)
1720419 K at. (et
2731173 kK at. Ol
373829 kK at. CreCgcc

Thread 1D (tid/systid)

Remote process

b/196d3
B./13317

in ,_pthread_body

L 4/34201 Pl in .forksort
in ,_pthread_body

——

[ [Ir*gr*een—l*] 20408 B3 SLxzort_t (2 threads)
|

location

Process status

Action point ID
Thread status

Figure6. Root Window

20 TotalView User's Guide



Using the Primary Windows

Starting A To start a process:

Process 1. Moveyour cursor to the process window.

2. Set abreakpoint in the source code by selecting a boxed line number.

3. Typethekeyboard accelerator g (for the Go Processcommand). The process
starts running and then stops at the breakpoint you set.

Navigation controls

Process and thread ID (pid.tid)
Process ID (pid)
Process status —— Process [roreen-loaner,dolphinics,com] 169203 tymort f vt '
Thread status —— Thread [rgreen—loaner,dolphinics,con] 16920,7¢ (Stopped)
Stack trace pane —iild Stack Trace Stack Frame L
C 1, ! oo |ﬁ Function ",sort"s ﬁ
Langl,lage of JForksort, FP=202dc10c datat 0x2029e09c -» {Compound Obj
. —CC ] .txwrap, FP=202dcl4c Local wariables:
routine . _pthread_body, FP=202dc19c pivot: 020224118 > "the"
temp s 0x20230768 > "trace"
i: QxO0002de (7320
Selected frame Jt 0x0000041c (1052
count; QxOO0D0EZF {1099)
Stack frame pane words: 0x2023F494 -> 0x2021eelB >
@ left: {Compound Object}
Source code pane Function ,sort in txsort.c
words[il = wordslcount-112
Tag field area —— /% partition the array so that the pivot value divides the array
% =0 that all elementz below the pivot have values lezz than the
¥ pivat and all element above the pivot have walues greater than
% the pivot
LT3
for ¢i = -1, j = count-1¢ ¢ }
Current PC —_— do £ i += 1 ¥ while {strompiword=[il, piwotl < 0
: do £ j —= 1t ¥ while {(strompiwords(jl, pivot) > 032
if (1>
breal :
temp = words[il:
word=Lil = words[jl:
LA wards[jl = temp:
. . 208 H
Action points pane—{s
Thread list pane——fzzzzzzs Threads (L0 SR | % fction Points #
57047 K at 000000 3 line 293 in .forksort+0x18 5
Thread count £/343 T in . | 4 lire 311 in .maine0x2d
Selected thread ——EZ i
8/24733 T in ,_pthread_body -
9/24227 I3 in ,forksort L

Figure7. Process Window

TotalView User's Guide 21



CHAPTER 2: TotalView Basics

When you are debugging aremote process the abbreviated hostname on which the
process is running appears in square brackets in the root window, and the full
hostname appears in square brackets in the title bar of the process window. For
example, in Figure 7, the process running txsort_t is on the machine

r green-loaner.dolphinics.com, which is abbreviated to [rgreen-I*] in the root
window. In the process window, the full hostname of the process
[rgreen-loaner.dolphinics.com] is displayed.

As you examine the process window in Figure 7, notice the following:

22 TotalView User's Guide

Thethreadlist paneshowsthelist of threadsthat currently existinthe process.
The number in the thread list panetitleisthe count of the number of threads
that currently exist in the process. When you select adifferent thread in the
thread list, TotalView updates the stack trace pane, stack frame pane, and
source code paneto show you theinformation for that thread. Whenyou dive
onadifferentthreadinthethreadlist, Total View findsor opensanew window
displaying information for that thread. Holding down the Shift key whenyou
dive will force TotalView to open a new process window focused on that
thread.

Thethread ID shown in the root window and thread list pane of the process
window isintheformattid/systid. tidisthe Total View assignedlogical thread
ID and systid is the system assigned thread ID. On systems such as Digital
UNIX, wherethetid and systid values arethe same, Total View displaysonly
thetid value.

In other windows, TotalView usespid.tid toidentify threadswithin aprocess.

The stack trace pane showsthe call stack of routinesthat are executed by the
selected thread. Y ou can move up and down the call stack by selecting the
desired routine (stack frame). When you select a different stack framein the
call stack, TotalView updates the stack frame pane and source code pane to
show the information about the selected routine.

The stack frame pane displays all the function parameters, local variables,
and registers for the selected stack frame.

Theinformation displayed in the stack trace and stack frame panes reflects
the state of the process when it was last stopped. Therefore, the stack trace
and stack frame panes are not current while the thread is running.

In the left margin of the source code pane, the tag field area contains line

numbers oppositeall lines of source code. Y ou can place abreakpoint at any
line of source code that generated object code, which isindicated by aboxed
line number. The arrow in the tag field indicates the current location of the



Using the Primary Windows

program counter (PC) for the selected stack frame. See Figure 8 for more
information.

s

Tag field

Figure8. Program Counter

» Inamultiprocess or multithreaded program, each thread hasits own point of
execution, so the program counter arrow pointsto a unique program counter
(PC) in each process window for a particular thread. Therefore, when you
stopamultiprocessor multithreaded program, theroutinesel ectedin thestack
trace pane for a particular thread depends on the PC for the thread. At the
time you stop the program, some threads might be executing in one routine,
while others might be executing in other routines.

» Theaction pointslist pane showsthelist of breakpointsand eval uation points
for the process.

» Thenavigation control buttonsin the upper right-hand corner of the process
window allow you to easily navigate through the processes and threads you
are debugging.

Sizi ng Process Y ou can change the size the panes in the process window. If you do not want to
Window Panes see aparticular pane, you can size the pane to azero size. To do so:

1. Movethe mouse cursor over the edge of the window pane until the cursor
with crossed arrows appears, as shown in Figure 9:

&

Figure9. The Sizing Cursor

2. Holddowntheleft mousebuttonand drag theedgeuntil the paneisthedesired
size.

TotalView User's Guide 23



CHAPTER 2: TotalView Basics

Navi gati ng in The navigation control buttons, located in the upper right corner of the process
the Process window, allow you to easily navigate through the processes and threads you are
. debugging. Using these buttons you can:
Window
* Move up and down the list of processes you are debugging
* Move up and down the list of threadsin a particular process
» Go back to the previous contents of the process window

Figure 10 shows the navigation controls available in the process window.

Go back button
Previous process button

Next process button

Next thread button

Previous thread button

Figure10. Process Window Navigation Controls

Navi gati ng in Y ou can also navigate through the processes and threads you are debugging from
the Root theroot window. Ingeneral, selecting aprocessor thread with theleft mouse button
: will not open anew window. Sel ecting triesto minimizethenumber of open process
Window windows. However, diving on aprocess or thread with the right mouse button will
open a new process window if an exactly matching process/thread combination
could not be found. Finally, holding down the Shift key when you dive always
opens a new window.

*  When you select a process in the root window, TotalView finds or opens a
processwindow for that process. If amatching window can’t befound, it will

replace the contents of an existing processwindow and show you the sel ected
process.

* Whenyou dive on aprocessin the root window, TotalView finds or opensa
process window for that process. Holding down the Shift key when you dive
will force TotalView to open anew process window focused on that process

24 TotalView User's Guide



The Process
Window Stack

Scrolling Windows and Fields

When you select athread in the root window, TotalView finds or opens a
process window for that process and show you the selected thread. If a
matching window can’t be found, it will replace the contents of an existing
process window and show you the selected thread.

When you dive on athread in the root window, TotalView finds or opens a
process window for that process and thread combination. Holding down the
Shift key when you divewill force Total View to open anew processwindow
focused on that thread.

Whenever the processand/or thread i sreplacedin the processwindow, the previous
contents of thewindow are pushed onto astack. The go back button popsthe stack
and shows you the previous contents of the processwindow. The process window
stack is pushed in the following cases:

Select or dive in the thread list pane in the process window

Select or dive on any of the four process/thread previous/next buttonsin the
process window

A select operation in the root window on a process or thread that causes the
contents of a process window to be replaced with the selected process or
thread.

Scrolling
Windows

Scrolling Windows and Fields

Y ou canusethescroll barsto scroll throughtheinformationin Total View windows
and panes, as shown in Figure 11.

To scroll oneline at atime, click the Select mouse button on the up or down
arrows (at the top and bottom of the scroll bar).

To scroll one page at atime, click the Select mouse button above or below
the elevator box inside the scroll bar.

To scroll an arbitrary amount, hold down the Select mouse button and drag
the elevator box inside the scroll bar.

TotalView User's Guide 25



CHAPTER 2: TotalView Basics

I-r\.

Elevator box

=

— Page-down region

Down arrow

Figure1l. Scroll Bar

To scroll continuously by line or by page, you can hold down the Select mouse
button instead of clicking it. If TotalView scrollstoo fast or too slow, you can
adjust thescrolling speed using X resources. Refer to “total view* scrol | LineSpeed:
n” on page 276 for further information.

Y ou can also scroll windows using the keys on your keyboard’ s numeric keypad:

N
Meta-1

!

Meta-|
Page up
Page down

Scrolls up oneline.
Scrolls up one page.
Scrolls down oneline.
Scrolls down one page.
Scrolls up one page.
Scrolls down one page.

On some platforms, you may need to adjust your X Window System keyboard
mapping to use certain keys on the numeric keypad. Refer to Appendix B,
" Operating Systems,” on page 321 for details.

26 TotalView User's Guide



Scrolling Windows and Fields

Scrolli ng Y ou can scroll multiline fields in dialog boxes, which allows you to create more

s : lines than are visible. The bottom left corner of the multiline field indicates your
Multiline Fields | i the field with the following symbols
* All—All of thelinesin thefield are visible.

» Top—Thetop line of thefield is visible, but there are more lines below the
bottom of the field that are not visible.

* Bot — The bottom line of the field is visible, but there are more lines above
the top of thefield that are not visible.

* nn% — The percentage of the lines above the top of the field that are not
visible.

Figure 12 shows an example of a scrollable multiline field.

Erwirarment;

TSPLAY=unixi0

T TOR=emacs
£=100
PDEST=beelzebub
HELL=/bin/csh
ERM=xtern
HISHOST=vinnie
Z=l53/Eastern
ISER=crock
DISPLAY=vinnie,dolphinics,comi0,0
Ch=0

Figure12. Scrollable Multiline Field

You can use the 1 key or Control-P to move up alinein amultilinefield. You
canasousethe | key or Control-N to movedown alineinamultilinefield. When
you moveoff thetop or bottom of thefield and therearemorelinesabove or below,
the field scrolls automatically by oneline.

Y ou can scroll amultiline field by more than one line at atime by combining
Control-U with any of the other commands for moving up or down aline. When
you precede an editing command with Control-U, it repeats the command four
times. For example, if you enter Control-U Control-P, the cursor moves up four
lines.

TotalView User's Guide 27



CHAPTER 2: TotalView Basics

Diving into Objects

To display more detail about an object (for example, avariable), dive into it by
clicking the Dive mouse button. Y ou can dive into any object that has ablock of
data associated with it, such as a pointer, structure, or subroutine. Total View
displays the information about the object in the current window or in a separate
window, as outlined in Table 2.

Table2. Usesfor Diving

Object Infor mation Displayed by Diving

Process or thread A processwindow appearsfocused on
athread. See “Using the Primary
Windows” on page 20.

Routine in the stack trace The stack frame and source code for

pane the routine appear in the process
window.
Pointer The referenced memory area appears

in a separate variable window.

Variable The contents of the variable appears
in a separate variable window.

Array element, structure The contents of the element or
element, or referenced memory area replaces the contents
memory area that wasin the variable window. This

is known as anested dive.

Subroutine! The source code for the subroutine
appears in the process window.

1. A subroutine must be compiled with source line information
(usually, with the—g switch) for you to diveinto it and see source code.
If the subroutine was not compiled with source line information, the
debugger displays the assembler code for the routine.

For additional information about displaying variable contents, refer to “Divingin
Variable Windows” on page 152.

28 TotalView User's Guide



Editing Text

Editing cursor
Selection box

Editing Text

To change the values of fieldsin TotalView windows, or to change text fieldsin
dialogs, you can use the field editor, which has basic text editing capabilities. To
edit text:

1. Click the left mouse button to select the text to change.

2. If you can edit the selected text, it is enclosed in arectangle, and the editing
cursor (ablack rectangle) appears, as shown in Figure 13.

[N Stack Frame NHINIRIT0TT00

Function ",main": | 4
= — 00000001513 ]
argut D2 P20 e

Local variabless

Figure 13. Editing Cursor

3. Edit thetext and press Return (for single-line fields) or Shift-Return (for
multiline fields).

Y ou can copy and paste text within Total View windows, between TotalView
windows, or between Total View windows and other X Window System windows.

Tocopy and pastetext between an editablefieldin Total View and other X windows
applications, do the following:

1. Copy text into the cut buffer with one of the following:

» Click and hold the left mouse button at one end of the range, drag the
cursor to the other end of the range, then let go of the mouse button; or

» Clicktheleft mousebutton at oneend of therangethen click right mouse
button at the other end of the range

TotalView highlightsthe text while you hold the mouse button down. When
you release the mouse button, the highlight disappearsindicating Total View
copied the text into the cut buffer.

2. Move the cursor to the place you want to paste the text, then do one of the
following:

TotalView User's Guide 29



CHAPTER 2: TotalView Basics

* Press Control middle mouse button; or

» Pressthe middle mouse button for amenu. Select Paste (Control-V)
from the menu.

Note:  The preceding steps apply to copy and paste operations for
TotalView windows only, not to other X Window System
clients.

Thefield editor supports some of the same commands as GNU Emacs, as outlined

in Table 3.

Table3. Field Editor Commands

Keystrokes Action

Control-A Move the cursor to the beginning of the line.
Control-B Move the cursor backward one character.
Control-C Abort the field editor, and discard al changes.
Control-D Delete the character under the cursor.
Control-E Move the cursor to the end of theline.
Control-F Move the cursor forward one character.

Control-H, Backspace,
or Delete

Control-K
Control-N
Control-O

Control-P

Control-U [n]

Delete the previous character.

Delete al text to the end of the line, or delete a newline.
Move the cursor to the next line (in fields with multiple lines only).
Insert anewline (in fields with multiple lines only).

Move the cursor to the previous line (in fields with multiple lines
only).

Multiply the number of times the command is executed by n. nis
optional; the default is 4. 1ssue this command in combination with
another command. For example, to move the cursor forward 50
characters, you enter: Control-U 50 Control-F.

30 TotalView User's Guide



Searching for Text

Table3. Field Editor Commands (Continued)

Keystrokes Action

Control-V Paste text from X windows copy buffer.

Tab Space over to the next tab stop. (Tab stops are located every four
characters.)

Return For single-linefields, stop the field editor and deselect the field. In
dialog boxes, confirm the dialog box asif the OK, Continue or Yes
button was sel ected.

For multi-line fields, insert a newline.
Shift-Return For both single-line and multi-line fields, stop the field editor and

Tvlv‘fvg’

deselect the field. In dialog boxes, confirm the dialog box asif the
OK, Continue or Yes button was selected.

Move up, down, backward, and forward one character.

Sear ching for Text

Y ou can search for text stringsin most TotalView windows. Y ou can use the
following commands:

Search for String(/) Searches forward in the window for atext
string. The debugger prompts you for the
string. The search starts from thefirst line of
text that is visiblein the window.

Search Backward for String (\)  Searches backward in the window for atext
string. The search starts from the last line of
text that is visiblein the window.

Reexecute Last Search (.) Repeats the last forward or backward search
without prompting for a string. The search
startsfrom the point where the last search | eft
off and continues in the same direction.

TotalView User's Guide 31



CHAPTER 2: TotalView Basics

Using the Spelling Corrector

TotalView checksthe spelling of text entriesfor certain commands. If TotalView
doesnot find the name you entered, it displaysadial og box with the closest match,
as shown in Figure 14.

A

ouldn’t find a baze type named "<wiod:",
he closest match was "<voids",

Figure14. Diaog Box for Spelling Corrector

Y ou can edit the closest match, and then select OK to useit, Original to get back
the original text, or Abort to cancel.

To customize the behavior of the spelling corrector with X Window System
resources, refer to “total view* spell Correction: { verbose | brief | none}” on
page 280.

Saving the Contents of Windows

Y ou can save the contents of most window panesas ASCI| text. Y ou can save the
contents in the following ways:

* Writeit to afile. When you specify filename, TotalView createsthefile (if
it does not exist) and overwrites its contents with the text.

» Appenditto afile. When you specify +filename, TotalView createsthefile
(if it does not exist) and appends the text to the end of it.

» Pipeit to UNIX shell commands. When you specify |command, TotalView
pipesthecommandsto/bin/sh for execution. Y ou can use aseriesof complex
shell commandsif desired. For example, toignorethetop fivelinesof output,

32 TotalView User's Guide



Exiting from the TotalView Debugger

compare the current ASCII text to an existing file, and write the differences
to another file, you specify:

[tail +5 | diff —filename > filename.diff
To save the contents of the current window pane:

1. Move the mouse pointer into the desired pane.

2. Select the Save Window to File command.

3. Enter filename, +filename, or [command in the dialog box.
4. PressReturn.

To save a series of panesin awindow, you can use the Reexecute L ast Save
Window command. This command repeats the last Save Window to File
command (including theinformation entered in the dialog box) but for the current
window pane.

Exiting from the TotalView Debugger

Y ou can exit from the debugger in two different ways:

* PressControl-Q in any window.
» Select the Quit Debugger (q) command in the root window.

In the dialog box, select Yesor typey to confirm. To cancel the exit, select No or
typen.

TotalView User's Guide 33



CHAPTER 2: TotalView Basics

34 TotalView User's Guide



CHAPTER 3:

Setting Up aDebugging Session

This chapter explains how to set up basic TotalView sessions. It aso describes
how to implement some common commands and procedures. For information on
setting up remote debugging sessions, see Chapter 4, “ Setting Up Remote
Debugging Sessions,” onpage 59. For information on setting up parallel debugging
sessions, see Chapter 5, “ Setting Up Parallel Debugging Sessions,” on page 75.

In this chapter, you will learn how to:

Compile programs

Start TotalView

Load executables

Attach to and detach from processes

Examine core files

Determine the status of processes and threads
Handle signals

Set search paths

Set command arguments and environment variables
Set input and output files

Monitor your TotalView session

TotalView User's Guide 35



CHAPTER 3: Setting Up a Debugging Session

Compiling Programs

Before you start to debug a program with the Total View debugger, you must
compilethe program with the appropriate switchesand librariesfor your situation.
Table 4 discusses some general considerations, but you must check Appendix A,
“Compilers and Environments,” on page 303 to determine the exact syntax and
any other considerations for your platform. For additional information on how to
compile a Portland Group HPF program for debugging, see “ Compiling HPF for
Debugging” on page 106.

Table4. Compiler Considerations

Compiler Switch or Library What It Does When to Use It

Debugging symbols switch Generates debugging Before debugging any

(usually —) information in the symbol program with TotalView
table

Optimization switch (usually ~ Moves code around to After you finish debugging

-0) optimize execution of your program with TotalView
program *

Multiprocess programming Uses special versions of the Before debugging a

library (usually dbfork) 2 fork() and execve() system multiprocess program that
cals explicitly callsfork() or

execve()

1. Some compilersdon’t permit you to use the —O switch simultaneously with the —g switch. Even if
your compiler does permit this, we recommend against it. Although you can do some debugging with
the —O option on, your debugging session may produce strange resullts.

2. The TotalView dbfork library is distributed as two separate libraries on IRIX6 MIPS. Use the
libdfork_n32.alibrary tolink to—n32 compiled executables. Usethelibdbfork_n64.alibrary tolink
to —64 executables.

3. Refer to “Processes That Call fork()” on page 199 and “ Processes That Call execve()” on page 199.

36 TotalView User's Guide



Starting the TotalView Debugger

Starting the TotalView Debugger

The complete command syntax for starting the Total View debugger isasfollows:

% totalview [filename [corefil€]] [options]

wherefilename specifiesthenameof theexecutabl efileto bedebugged and corefile
specifies the name of the core file to be debugged.

Here are some of the most common ways of starting the debugger:

totalview

totalview filename

totalview filename corefile

totalview filename —a args

totalview filename —grab

Startsthedebugger without loading aprogram
or corefile. Oncein Total View, you canload
aprogram by issuing the New Program

Window (n) command from theroot window.

Starts the debugger and |oads the program
specified by filename.

Starts the debugger and loads the program
specified by filename and the core file
specified by corefile.

Startsthe debugger and passes all subsequent
arguments (specified by args) to the program
specified by filename. The —a option must
appear after all other TotalView options on
the command line.

Starts the debugger and grabs the keyboard
whenever it displaysadialogbox. Y ou should
usethis option whenever you start Total View
with awindow manager that uses a“click-to-
type” model.

totalview filename — emote hostname| : portnumber]

Starts Total View on the local host and the
TotalView Debugger Server (tvdsvr) on the
remote host hostname. Loads the program
specified by filename for remote debugging.
Y ou can specify ahost name or TCP/IP
address for hostname, and optionally, a
TCP/IP port number for portnumber.

TotalView User's Guide 37



CHAPTER 3: Setting Up a Debugging Session

For more information on:

» debugging parallel programssuch asMPI, PV M, or HPF, refer to Chapter 5,
“Setting Up Parallel Debugging Sessions,” on page 75.

» thetotalview command, refer to Chapter 12, “ Total View Command Syntax,”
on page 287;

* remote debugging, refer to “ Debugging Remote Processes’ on page 60,
“ Starting the Debugger Server for Remote Debugging” on page 64, and
Chapter 13, “Total View Debugger Server Command Syntax,” on page 299;

L oading Executables

I If you did not load an executable when starting TotalView, you can load one at
oading a New
Executable any time using the New Program Window command. To do so, do thefollowing:

1. From the root window, select the New Program Window (n) command. A
dialog box appears, as shown in Figure 15.

r === === |
Eosnib sl Fils rowess

Filie=l |

i Fird o creabs & proceas Windes
L Creabs & rés proceer uirdsd

Hiwxh 1 exizting poomy o core Tile (o Blenk iF sl
sl 10 B Scigting praosts Ofmisr FIEL
O Core File OBl e Fils fdked

Frogras leatsan dor blank 0T lecalk;

W Fewcta hoat (Enfer rescbe hort nes or [P sdtdressd
i Sardal lire IEnter device nessd

Figure15. New Program Window Dialog Box

38 TotalView User's Guide



Reloading a
Recompiled

Executable

4.

L oading Executables

Enter the name of the executable in the top section of the dialog box. The
name can be afull or relative pathname.

If you supply asimple filename, TotalView searchesfor it in the list of
directories specified with the Set Sear ch Directory command and specified
by your PATH environment variable.

(Optional) If you prefer to create a brand new process instead of reusing an
existing one (the default), select the Create a new process window radio
button.When you select thisoption, Total View createsanew entry intheroot
window for the process

Press Return.

Note:  If you use the New Program Window command to load the

same executable again, TotalView does not reread the

executable, and it reuses the existing symbol table. To have
TotalView reread the executable, you need to usethe Rel oad
Executable File command, as described in the next section.

1.

If you have edited and recompiled your program during a debugging session, you
can reload your updated program without exiting from the debugger. To do so:

Confirmthat all processes using the executable have exited. If they have not,
display the Arguments/Create/Signal submenu and select the Delete
Program (*Z) command from the process window.

Confirm that duplicate copies of the process do not exist by issuing the ps
command in ashell. If duplicate processes exist, delete them with the kill
command.

Recompile your program.

In the processwindow, display the Arguments/Cr eate/Signal submenuand
select the Reload Executable File command. The debugger updates the
process window with the new source file and loads a new executable file.
Thenext timeyou start the process, the debugger usesthe new executablefile.

TotalView User's Guide 39



CHAPTER 3: Setting Up a Debugging Session

Attaching to Processes

If aprogram you are testing is hung or looping (or misbehaving in some other
way), you can attach to it with Total View. Y ou can attach to single processes,
multiprocess programs, and remote processes.

To attach to aprocess, you can either usethe Show All Unattached Processes(N)
or New Program Window (n) commands.

Note:  If the process or any of its children has called the execve()
routine, you may need to attach to it by creating a new
program window. The reason for thisis that on some
platformsTotal View usesthepscommandto obtainthename
of the executable file for the process. Since ps can give
incorrect names, TotalView might not be able to find the
executable for the process.

Attachi ng Usi ng Toattach to aprocess using the Show All Unattached Processes (N) command,

Show All go to the root window and complete the following steps:
Unattached 1. Select the Show All Unattached Processes (N) command.
Processes

The unattached processes window appears, as shown in Figure 16. This
window liststhe process|D, status, and name of each processassociated with
your username. The processes that appear dimmed are those that are already
being debugged by the debugger, or those that Total View will not allow you
to debug (e.g., the TotalView process itsalf).

40 TotalView User's Guide



Local
processes —

Remote
processes — |

87 Processzes that TotalView doesn’t own 7RSS
i

Local: 5 processes. 4 attachable

IPANE B owotelvicw
1B674 R p=
18780 B rsh
20510 R flipper
21442 R emacs

bimma,dolphinics,comi 4 processes, 4 attachable

26596 R txsort_t
28040 B tudswr
27898 R ps

28248 R rshd Iyt

Figure16. Unattached Processes Window

Attaching to Processes

If you are debugging a remote process in this session, the unattached
processes window also shows processes running under your username on
each remotehost name. Y ou can attach to any remote processlisted. For more
information on remote debugging, refer to “ Starting the Debugger Server for
Remote Debugging” on page 64 and Chapter 13, “ Total View Debugger

Server Command Syntax,” on page 299.

2. Diveinto the process you wish to debug.

A process window appears. The right arrow points to the current program
counter (PC) The PCindicateswherethe programiseither executing or hung.

TotalView User's Guide 41



CHAPTER 3: Setting Up a Debugging Session

Attachi ng Usi ng To attach to aprocesswiththe New Program Window (n) command, follow these
New Program ¥
Window 1. Gettheprocess|D (PID) of the process by using the ps command in ashell.

2. Issuethe New Program Window (n) command from the root window. A
dialog box appears, as shown in Figure 17.

[ e e T T e T e

Essnitable File noesr
Faliar

il o pragts & peoded sbad
D) [radte & sea process uirdes

Lpch Lo anldling prees o owe Fils dor Blank §F el
[ELERY |
3 ELsch e exigling process {Entes PIDD

1 [are #ile (Ervier core il nasl

Frogram location <o blank of lorasli:

# Fesrie hest (Enter rescte borl ress o IF sddeea)
i Sarial lies IErémr deecice mael

Figure17. New Program Window Dialog Box

3. Enter the name of the executable in the top section of the dialog box. The
name can be afull or relative pathname. If you supply asimple filename,
TotalView searchesfor it in the list of directories specified with the Set
Search Directory command and specified by your PATH environment
variable.

4. Enter the process ID (PID) of the unattached process in the middle section
of the dialog box.

5. PressReturn.

If the executable is a multiprocess program, the debugger asks you if you
want to attach to all relatives of the process. If you want to examine all
processes, select Yes.

42 TotaView User's Guide



Detaching from Processes

If theprocesshaschildrenthat called execve(), thedebugger triesto determine
the correct executablefor each of them. If the debugger cannot determinethe
executables for the children, you need to delete (kill) the parent process and
start it again using Tota View.

Finally, a process window appears. The right arrow points to the current
program counter (PC). Thisiswherethe program iseither executing or hung.

Detaching from Processes

Y ou can detach from any processes to which you have attached (that is, processes
that Total View did not create) when you finish debugging them. When you detach
from a process, TotalView removes all breakpoints that you set in that process.

To detach from a process:

1

If you want to send the process asignal, select the Set Continuation Signal
command. Choosethesignal that Total View should send to the processwhen
it detachesfromit. For example, to detach from aprocessand leaveit stopped,
set the continuation signal to SIGSTOP.

Display the Arguments/Create/Signal submenu and sel ect the Detach from
Process command.

Examining a CoreFile

If a process encounters a serious error and dumps a core file, you can examine it
from the debugger. TotalView provides two different methods for examining a
corefile:

Y ou can start the Total View debugger with the following command:

% totalview filename corefile [options]

where cor€file is the name of the corefile.

TotalView User's Guide 43



CHAPTER 3: Setting Up a Debugging Session

* You can issue the New Program Window (n) command from the root
window. Inthedialog box, enter the name of the corefileinthe middlesection
of the dialog, select the Corefile radio button, and press Return.

Note:  You can debug only local core files. TotalView does not
support remote debugging of core files.

The process window displays the core file, with the stack trace, stack frame, and
source code panes showing the state of the processwhen it dumped core. Thetitle
bar of the processwindow specifiesthesignal that caused the core dump. Theright
arrow in the tag field of the source code pane indicates the value of the program
counter (PC) when the process encountered the error.

Y ou can examineall of thevariablesto seetheir state at the time the processfound
the error. For more information on examining variables, refer to Chapter 7,
“Examining and Changing Data,” on page 147.

If you start aprocesswhileyou are examining acorefile, the debugger stopsusing
the core file and starts a fresh process with the executable.

Deter mining the Status of Processes and
Threads

Process and thread states are displayed in:

The root window, for processes and threads
* The unattached processes window, for processes

» The process and thread status bars of the process window, for processes and
threads

» Thethread list pane of the process window, for threads

44 TotalView User's Guide



Process Status

Thread Status

Determining the Status of Processes and Threads

The status of a process includes three things: the process location, the process 1D,
and the state of the process. Theroot window displaysasingle character to identify
the state of a process. The process status in the root window takes the following
form:

[L] N Sprocess_name

where [L] isthe process location (present only for remote processes), N isthe
process ID, Sisthe single-character representation of the process state, and
process nameis TotalView’s name for the process.

The unattached processeswindow listsall processes that are associated with your
username. The format of the information in the unattached process window is
similar to the format of processesin the root window. Process states are specified
with asingle character. Processes which you are debugging in your Total View
session are dimmed out.

Theprocess status bar of the processwindow displaysinformation inthefollowing
format:

Process[L] N: process_name (state)

where [L] isthe process location (present only for remote processes), N isthe
process ID, process nameis TotalView’s name for the process, and state is the
state name of the process based on the state of its threads.

The root window displays a single character to identify the state of athread. The
thread status in the root window takes the following form:

T/X Sin routine_name

where T isthe Total View assigned thread ID, X isthe system assigned thread ID,
and Sisthe single-character representation of the thread state, and routine_name
isthe name of the routine in which the thread was executing when last stopped by
TotalView. On systems for which the Total View-assigned thread ID and the
system-assigned thread 1D are the same, TotalView displays only one ID value.
See Figure 18.

TotalView User's Guide 45



CHAPTER 3: Setting Up a Debugging Session

Program name

TotaView version number

Target system

Process ID (pid)

Collapse/Expand toggle

I
Rl ATY TotalView 3X,§,0-3 BTSSR

L Fa76d? 11 L /twsort_t (6 threads) i
1/20419 at 000000 D

|_ 2/21173 at 0000000

/7629 at 0000000

oo

Thread list

Thread 1D (tid/systid)

4/34251 1 in ,forksort
5419662 T in ,_pthread_body
1531 T in ,_pthread_body

[ [rlgreen—l*] 20408 B3 SExmort_t {2 threads)

Remote process
location

Process status

Action point ID number:
Thread status

Unattached
Process States

Figure18. Root Window Showing Process and Thread Status

Thethread list pane in the process window uses the same thread status format as
the root window.

Thethread status bar of the process window displaysinformation in the following
format:

Thread N.T: process_name (state) <reason>

where N isthe process ID, T isthe Total View assigned thread 1D, process_name
is TotalView’s name for the process, state is the state name of the thread, and
<reason> is the reason the thread stopped.

The state information for aprocess displayed in the unattached processes window
isderived from the system. The state characters Total View usesto summarizethe
state of an unattached process do not necessarily match those used by the system.

46 TotalView User's Guide



Determining the Status of Processes and Threads

Table 5 summarizes the possible states in the unattached processes window.

Table5. Summary of Unattached Process States

State
State Character Meaning for a process
Running R Processis running or can run.
Stopped T Processis stopped.
Idle I Process has been idle or sleeping for more than 20 seconds.
Sleeping S Process has been idle or sleeping for less than 20 seconds.
Zombie Z Processisa“zombie,” achild process that has terminated
and iswaiting for its parent process to gather its status.
Attached The state of processes and threads that TotalView is attached to is displayed in
Process States various windows.

Table 6 summarizesthe possible states for an attached process or thread, and how

the states are displayed.

Table6. Summary of Attached Process and Thread States

State
State Name Character Meaningfor athread and process
Exited or never created Blank Process only: does not exist.
Running R Thread: isrunning or can run.
Process: al threadsin the process are running or can
run.

Mixed M Processonly: somethreadsin the processare running

Error <reason>

and some are not running. Or the processis expecting
some of its threads to stop.

E Thread: is stopped because of error reason.
Process: one or more threads arein the Error state.

TotalView User's Guide 47



CHAPTER 3: Setting Up a Debugging Session

Table6. Summary of Attached Process and Thread States (Continued)

State
State Name Character Meaningfor athread and process
At Breakpoint B Thread: stopped at a breakpoint.
Process: one or more threads are stopped at a
breakpoint, but none arein the Error state.
Stopped <reason> T Thread: stopped because of reason, but not at a
breakpoint and not because of an error.
Process: one or more threads are stopped, but none
areinthe At Breakpoint state and none are in the
Error state.
In Kernel K Thread only: thethread isexecuting inside the kernel

(that is, made a system call). When athread isin the
kernel the operating system does not allow the
debugger to view the full state of the thread.

The Error state usually indicates that your program received afatal signal from
the operating system. Some signals, such as SIGSEGV, SIGBUS, and SIGFPE
may indicate an error in your program. Y ou can control how TotalView handles
signals your program receives.

Handling Signals

If your program contains a signal handler routine, you might need to adjust the
way the debugger handles signals. Y ou can change the way in which Total View
handles signals by using a dialog box (described in this section), an X resource
(see “totalview* signalHandlingMode: action_list” on page 278), or a command-
line option to the totalview command (refer to “ Total View Command Syntax” on
page 287).

48 TotalView User's Guide



Handling Signals

By default, TotalView handles UNIX signals as outlined in Table 7.

Table7. Default Signal Handling Behavior

Signalsthat arePassed Back to  Signalsthat Stop Your

Your Program Program or Causean Error
SIGHUP SIGILL
SIGINT SIGTRAP
SIGQUIT SIGIOT
SIGKILL SIGEMT
SIGALRM SIGFPE
SIGURG SIGBUS
SIGCONT SIGSEGV
SIGCHLD SIGSYS
SIGIO SIGPIPE
SIGVTALRM SIGTERM
SIGPROF SIGTSTP
SIGWINCH SIGTTIN
SIGLOST SIGTTOU
SIGUSR1 SIGXCPU
SIGUSR2 SIGXFSZ

Note: The SIGTRAP and SIGSTOP signals are used internally by
the Total View debugger. If the process encounters any of
these signals, TotalView neither stops the process with an
error nor passesthesignal back toyour program. Further, you
cannot alter the way the debugger uses these signals.

Some hardwareregisterscan affect how signalsare handled on your platform, such
asthe SIGFPE signal and others. For moreinformation, refer to“ Interpreting Status
and Control Registers’ on page 124 and Appendix C, “ Architectures,” on page 333.

TotalView User's Guide 49



CHAPTER 3: Setting Up a Debugging Session

If the Total View debugger’ sdefaultsare not satisfactory, you can changethesignal
handling mode. To do so, go to the process window and complete the following

steps:

1. Display the Arguments/Create/Signal submenu and select the Set Signal
Handling Mode... command. A dialog box appears, as shown in Figure 19.

——r - ——— s~ ——r———r——rr——rr——r———r——-r—r——~r——r
Stop relatsd proosiies 8 ST

Opmry Sor raied proceds windes o e

Upan tor raized procsas wirdow sk breshpoimt

o0 @ O GNP i1} Hargup 4
& ] . r  S3GIAT 21 Inbarrups

& i ] 3 EIERIT 5k it

kL 2 ] 2 EMGILL (dF 11hesal iretesstion uil redel b Casghll
o ol {n] O CICAWT B} fbort procesy

s 1] L, L EIZHI LiF LHT ineruekion

b ] I i EIFFE AF Flest i posat saaption

o 2 -] i EMEILL CAF GID Ol B (il oo g b

& 0 {n] > ENRE (i B error

b ".: Ll ::'! EISELN CLLF Sapmarristion wialstion

L] RGNS CL7F Badl gk 0 pmbss oall

A 2 u] i ENPIFE CLE Wrabs on & ples wibh sy o D8 eesd ol

A 2 u] CF ENTERH  ciSF Softesrw berwinstion signal Fram kill

Ll y] ] [ =1 - H LlEF Urpant conchkian on 0 chenral

T | TS | Lo |

Figure19. Diaog Box for Set Signal Handling Mode Command

Note:  Theset of signal namesand numbersshownin thedial og box
are platform-specific. The dialog box displayed on your
platform may have additional signals and different signal
numbers.

2. By default, when your program encounters an error signal, TotalView stops
all related processes. If you do not want this behavior, deselect the Stop
related processes on error checkbox.

3. By default, when your program encounters an error signal, TotalView opens
or raises the process window. If you do not want this behavior, deselect the
Open (or raise) processwindow on error checkbox. Y ou can change the
default setting of thischeckbox using an X resource (“ total view* popOnError:
{on | off}” on page 275) or acommand line option.

50 TotalView User's Guide



Handling Signals

Note:  If theprocessesinamultiprocessprogram encounter anerror,
the debugger automatically opens a processwindow for only
the first process that encounters an error. Thus, if your
program has many processes, thisfeature preventsthe screen
from filling up with process windows.

4. If you select the Open (or raise) processwindow at breakpoint checkbox,
TotalView will open or raise the process window when your program
encountersabreakpoint. If youwant thisbehavior by default, you can change
the default setting of this checkbox using an X resource
(“totalview* popAtBreakpoint: { on | off}” on page 275) or acommand line

option

5. Scroll the signa list to the desired signal.

6. For each signa listed in the dialog box, choose one of the following signal
handing modes by selecting its radio button:

Error

Stop

Resend

Discard

Stops the process, placesit in the error state, and
displaysan error inthetitle bar of the processwindow.
If the Stop related processeson error checkbox is
selected, the debugger also stopsall related processes.
Y ou should select thissignal handling modefor severe
error conditions, such as SIGSEGV and SIGBUS
signals.

Stops the process and places it in the stopped state.
Select thissignal handling modeif you want the signal
to be handled like the SIGSTOP signal.

Sends the signal to the process. If your program
containsasignal handling routine, you should usethis
mode for all the signalsthat it handles. By default, the
common signals for terminating a process (SIGKILL
and SIGHUP) use this mode.

Discards the signal and restarts the process without a
signal.

Note:  Don’'t use Discard mode for fatal signals, such as SIGSEGV
and SIGBUS. If you do, the debugger can get caught in a
signal/resignal loop with your program, with the signal
immediately recurring because of repeated reexecution of the
failing instruction.

TotalView User's Guide 51



CHAPTER 3: Setting Up a Debugging Session

7.

Select OK to confirm your changes, Abort to cancel the changes, or Defaults
to return to the default mode settings.

Setting Search Paths

If your source code, executable or object files reside in anumber of different
directories, you can set search pathsin the debugger for these directories with the
Set Sear ch Directory command. By default, the debugger searchesthefollowing
directories (in order) for source code:

1
2.

4.

The current working directory (.).

Thedirectories you specify with the Set Sear ch Directory command, in the
exact order you enter them in the dialog box.

If you specified afull pathname for the executable when you started
TotaView, it searches the directory specified.

The directories specified in your PATH environment variable.

These search paths apply to all processes that you are debugging, and to all
directory search situationsin TotalView.

TousetheSet Sear ch Dir ectory command, goto theprocesswindow and compl ete
these steps:

1

52 TotalView User's Guide

Display the Display/Dir ectory/Edit submenu and select the Set Sear ch
Directory... (d) command.

A dialog box appears, as shown in Figure 20.



Setting Search Paths

e e e e e e e e e e e e e e e e e e e e e m e =
Diireotor i 1 ssarche
e
aul T
- LS
o pro so bl e
ALl
- =
L _

Figure20. Diaog Box for Set Search Directory Command

2. Enter the directories in the order you want them searched, separating each
directory with a space. Y ou can use multiple lines if needed.

The current working directory (.) isthe first directory listed in the window.
Y ou can move the current working directory further down thelist, but if you
removeit, TotalView insertsit at the top of the list again.

Y ou can specify rel ative pathnames, which areinterpreted with respect to the
current working directory.

3. Select OK (or press Shift-Return).

Onceyou changethelist of directorieswith the Set Sear ch Directory command,
the debugger automatically searches again for the source file that is currently
displayed in the process window.

Note:  You can specify search directories that apply across
TotalView sessions with an X Window System resource.
Refer to “totalview* searchPath: dirl[,dir2,...]” on page 277.

TotalView User's Guide 53



CHAPTER 3: Setting Up a Debugging Session

Setting Command Arguments

When the debugger creates a process, it passes one argument to the program by
default: the name of thefile containing the executable code for the process. If your
program requires any arguments from the command line, you must set these
arguments before you start the process. To do so, go to the process window and
complete the following steps:

1. Display the Arguments/Create/Signal submenu and select the Set
Command Arguments... (a) command. A dialog box appears, as shown in
Figure 21.

B S e o o S S S S oS =g
Ciirad = | g Srpimd g

3 vl

Esix will Ba o erpesend. arga”

All —

Figure2l. Dialog Box for Set Command Arguments Command

2. Enter the arguments to be passed to the program. Separate each argument
with a space, or place each argument on a separate line. If an argument has
spaces in it, enclose the whole argument in double quotes.

3. Select OK (or press Shift-Return).

Y ou can a'so set command-line arguments with the —a option of the totalview
command, as discussed in “ Starting the Total View Debugger” on page 37.

54 TotalView User’'s Guide



Specifying Environment Variables

Specifying Environment Variables

Y ou can set and edit the environment variablesthat TotalView passesto aprocess
when it createsthe process. When Total View createsanew process, it passesalist
of environment variablesto the process. By default, a new process inherits
TotalView’s environment variables, and aremote process inherits tvdsvr’s
environment variables.

If the environment variable dialog is empty, the process inherits its environment
variablesfrom Total View or tvdsvr . If you add environment variabl esto thedial og,
the processno longer inheritsitsenvironment variablesfrom Total View or tvdsvr,
it only receivesthe variables specified in the dialog box. Therefore, if you want to
add to the variablesinherited from Tota View or tvdsvr, you must enter al of the
variables inherited into the dialog and then make your additionsin the dialog.

An environment variable is specified by: hame=value. For example,
DISPL AY =unix: 0.0 specifiesan environment variablenamed DI SPL AY withthe
value unix:0.0.

Toadd, delete, or modify the environment variables, go to the processwindow and
complete the following steps:

1. Display the Arguments/Create/Signal submenu and select the Set
Environment Variables command. In the dialog box, you must place each
environment variable on a separate line. TotalView ignores blank lines.
Figure 22 shows the dialog box.

TotalView User's Guide 55



CHAPTER 3: Setting Up a Debugging Session

MILL . brire'cuh
[ =Tl

T e
st abem
I mhati g
EPLAT= g |, o gl o, ool O
L=
TE |
Hll
= =
s _

Figure22. Environment Variables Dialog Box
2. Inthedialog box, you must place each environment variable on a separate
line. TotalView ignores blank lines.
3. To change the name or value of an environment variable, edit the line.

4. To add anew environment variable, insert a new line and specify the name
and value.

5. Todeleteanenvironment variable, deletetheline. Deleting all thelinescauses
the process to inherit TotalView' s or tvdsvr’s environment.

6. Select OK (or press Shift-Return).

Setting Input and Output Files

Before beginning execution of the program you’ re debugging, TotalView
determines how to handle standard input (stdin) and standard output (stdout). By
default, Total View createstheprogram sothat it readsstdin fromand writesstdout
to the shell window from which you started TotalView.

56 TotalView User's Guide



Monitoring TotalView Sessions

If desired, you can redirect stdin or stdout to afile. To do so, complete these steps
from the process window before you start executing your program:

1. Display the Arguments/Create/Signal submenu and select either I nput
from File... (<) or Output to File... (>). A dialog box appears. Figure 23
shows the dialog for Input from File.

Figure23. Diaog Box for Input from File Command

2. Enter the name of thefile, relative to your current working directory.
3. Select OK (or press Shift-Return).

Monitoring TotalView Sessions

TheTotalView debugger logsall significant eventsoccurring for all processesyou
are debugging. To view the event log, go to the root window and select the Show
Event Log Window command. The event log window displays a sequential list

of eventsthat you can scroll.

TotalView User's Guide 57



CHAPTER 3: Setting Up a Debugging Session

Figure 24 shows the event log window.

% TotalView Event Log B8PSy SSspr gy gy

Thread 0,1 has appeared
Process O has exited
Thread 0,1 has appeared
Process O has exited
Created process 18858, named "txsort_t"

Thread 18858,1 has appeared

Thread 18858,2 has appeared

Thread 18858,2 hit a breakpoint at line 293 in ".forksort"

£

a

Figure24. Event Log Window

58 TotalView User's Guide



CHAPTER 4:

Setting Up Remote Debugging
Sessions

This chapter explains how to set up TotalView remote debugging sessions for
debugging over the network or over a serid line.

For information on how to set up abasi c debugging session, see Chapter 3, “ Setting
Up aDebugging Session,” on page 35. For information on how to set up aparallel
debugging session, see Chapter 5, “ Setting Up Parallel Debugging Sessions,” on
page 75.

In this chapter, you will learn how to:

Debug remote processes
Connecting to remote machines
Start the debugger server for remote debugging

Debug over aseria line

TotalView User's Guide 59




CHAPTER 4: Setting Up Remote Debugging Sessions

Debugging Remote Processes

Y ou can begin debugging remote processes either by oading aremote executabl e,
or by attaching to aremote process.

Note: Y ou cannot examine core files on remote nodes.

L oadi nga To load aremote program into TotalView, do the following:
Remote 1. Complete stepsin “Loading a New Executable”’ on page 38.
Executable

2. Enter the host name or TCP/IP address of the machine on which the
executableshould berunninginthebottom section of thedial og box, asshown

in Figure 25.

Essinitable FLlg ioes!
Filtar

B Find oo
Lirarle

FEFLE & R e
o o

o UOET] W

Lsch Lo anldl g protes o owe Fils dor Blank §F el

B BLach te an eialieg process {Entes FIID
£ [ara #ile (Evier core File nasl

Frogram location for blank of loceli:

b kel | 1 | i B

# Fewste host (Enter rescbe barl rness o 1P sddress)
i Sarial lies IErémr deecice mael

Figure25. New Program Window Dialog Box

60 TotalView User's Guide



Attachingto a
Remote Process

Debugging Remote Processes

Note:  On some multiprocessor platforms, there will be additional
radio buttonsin the lower section of the dialog box. Y ou can
usethese buttonsfor debugging programsthat arerunning on
groups or clusters of processors.

3. PressReturn.

Note:  If this method does not work, you might need to disable the
auto-launch featurefor thisconnection and start the debugger
server manually. In step 2, as an alternative, you can specify
hostname: portnumber, where portnumber isthe TCP/IP port
number on which the debugger server (tvdsvr) is
communicating with TotalView. For more information on
this alternative, refer to “ Starting the Debugger Server for
Remote Debugging” on page 64.

Y ou can attach to a remote process using the same dialog boxes as you do when
you attachto alocal process, but you enter information in different boxes. Y ou can
also attach to a remote process by bringing up the correct windows, then diving
into processes from them.

To attach to aremote process, complete the following steps:

1. Completethestepsin“Attaching Using New Program Window” on page 42.

2. Enter the host name or TCP/IP address of the machine on which the
executable should be running in the bottom section of the dialog box.

Note:  On some multiprocessor platforms, there will be additional
radio buttonsin the lower section of the dialog box. Y ou can
usethese buttonsfor debugging programsthat arerunning on
groups or clusters of processors.

3. PressReturn.

TotalView User's Guide 61



CHAPTER 4: Setting Up Remote Debugging Sessions

Note:  If this method does not work, you might need to disable the
auto-launch featurefor thisconnection and start the debugger
server manually. In step 2, as an alternative, you can specify
hostname: portnumber, where portnumber isthe TCP/IP port
number on which the debugger server (tvdsvr) is
communicating with TotalView. For more information on
this alternative, refer to * Starting the Debugger Server for
Remote Debugging” on page 64.

Y ou can also attach to aremote process by first connecting to a remote host with
the New Program Window (n) command and then bringing up alist of unattached
processeswith the Show All Unattached Processes(N) command. Y ou can attach
to these processes by diving into them.

1. Connect to the remote host. For details on how to do this, see “Connecting
to Remote Machines’ on page 63.

2. After you connect to the remote host, bring up alist of unattached processes.
Y ou can attach to these processes by diving into them. For details on these
steps, see “ Attaching Using Show All Unattached Processes’ on page 40.

62 TotalView User's Guide



Connecting to Remote Machines

Connecting to Remote M achines

If the you want to connect to a remote machine, you can do it in two ways—by
using the —+emote option on the command line when you start TotalView or by
using the New Program Window (n) command from the root window after you
start TotalView.

If TotalView supports the runtime library (e.g., MPI, PVM, or HPF) then it
automatically connects to remote hosts for you as part of the automatic process
acquisition. Therefore, you do not need to manually connect to the remote
machines. For more information, see Chapter 5, “ Setting Up Parallel Debugging
Sessions,” on page 75.

For details on the syntax for the command-line —+emote option, see “ Starting the
TotalView Debugger” on page 37.

To connect to aremote host from a TotalView session, follow these steps:

1. Issuethe New Program Window (n) command from the root window. A
dialog box appears, as shown in Figure 26.

Executable file name:

@ Find or create a process window
{3 Create a new process window

Attach to existing process or core file {or blank if nonel:

@ fAttach to an existing process {(Enter PID}
3 Core file {Enter core file name}

Program location {or blank if locali:
pinniell

@ Remote host {Enter remote host name or IP address)
3 Serial line {Enter device name}

Figure26. Remote Host Connection

TotalView User's Guide 63



CHAPTER 4: Setting Up Remote Debugging Sessions

2. DeletethetextfromtheExecutablefilenameand Attach toexisting process
or corefilefields.

3. Enter the host name or TCP/IP address of the machine on which the
executable should be running in the bottom section of the dialog box.

Note:  On some multiprocessor platforms, there will be additional
radio buttonsin the lower section of the dialog box. Y ou can
usethese buttonsfor debugging programsthat arerunning on
groups or clusters of processors.

4. PressReturn.

Starting the Debugger Server for Remote
Debugging

Debugging aremote process with TotalView isidentical to debugging a native
process except for the following:

* Theperformance of your session depends on the performance of the network
between the native and remote machines. If the network is overloaded,
debugging can be slow. In general, we designed remote debugging to work
with the speeds encountered on aLAN.

» TotalView workswith another processrunning ontheremote machine, called
the TotalView Debugger Server (tvdsvr), to debug the remote process.

Therest of this section discusses the different ways you can start the Total View
debugger server

The By default, TotalView automatically launchestvdsvr for you, which isknown as
Auto-L aunch the auto-I aur_wch feature. The advantage of auto-launch isthat it ma_\keﬁ it easy to

start debugging remote processes—yYyou don’'t need to take any action to start the
Feature debugger server.

If youwant to know moreabout auto-launch, hereisthe sequence of actionscarried
out by you, TotalView, and tvdsvr when auto-launch is enabled:

64 TotalView User's Guide



4,
5.

Starting the Debugger Server for Remote Debugging

With the New Program Window command, you specify the host name of
the machine on which you want to debug a remote process, as described in
“Debugging Remote Processes’ on page 60.

TotalView begins listening for incoming connections.

TotalView launches the tvdsvr process with the server launch command.
“The Server Launch Command” on page 66 describesthe command in detail.

Thetvdsvr process starts on the remote machine.

Thetvdsvr process establishes a connection with TotalView.

Figure 27 summarizes the actions carried out by the auto-launch feature.

Host machine
5. Makes. 4. tvdsvr starts
CdTotdView | 4| onnection Target machine j
~| 3 Invokes —(____ tvdwr )1
—\W Remole executable |
]
| 2. ListenA [

Auto-L aunch
Options

Figure27. Auto-Launch Feature

If the auto-launch feature does not work on your system, you can tailor the
following items:

The command used by TotalView to launch tvdsvr
The arguments passed to the launch command or to tvdsvr

The length of time TotalView waits (that is, the timeout) to receive a
connection from tvdsvr

Whether or not the auto-launch feature is enabled

The only constraint in tailoring auto-launch is that tvdsvr must be started on the
remote machine with the —callback and —set_pw arguments.

TotalView User's Guide 65



CHAPTER 4: Setting Up Remote Debugging Sessions

TheServer Launch By default, TotalView uses the following command string when it automatically
Command launches the debugger server:

rsh %R —n "cd % & & t vdsvr —cal | back %4 —set _pw % —verbosity W"

With this command string, the rsh command invokes a shell on the host name
specified by % R and invokes the commands enclosed in quotation marks, where:

%R Expands to the host name of the remote machine that
you specifiedintheNew Program Window command.

-n Causes the remote shell to read standard input from
/dev/null.

When the remote shell is started by rsh, it first changesto the % D directory with
the cd command:

%D Expandsto thefull pathname of the directory to which
TotaView is connected.

Notethat the“cd % D” portion of the command assumesthat the host machine and
the target machine mount identical filesystems. That is, the pathname of the
directory to which TotaView is connected must be identical on both the host and
target machines.

Next, the remote shell startsthe TotalView Debugger Server with the tvdsvr
command and the following arguments:

—callback Establishes a connection from tvdsvr to TotalView
using the specified host name and port number.
%L Expands to the host name and TCP/IP port number

(hostname:port) on which TotalView islistening for
connections from tvdsvr.

—set_pw Sets a 64-hit password for security. TotalView must
supply this password when tvdsvr establishes the
connection with it.

%P Expandsto the password that TotalView automatically
generated.

—verbosity Setsthe verbosity level of the TotalView Debugger
Server.

%V Expands to the current TotalView verbosity setting.

66 TotalView User's Guide



Changingthersh
Command

Starting the Debugger Server for Remote Debugging

To change the server launch command each time you start TotalView, you can set
an X resource. See*total view* serverLaunchString: command_string” onpage 277
for more information.

For the complete syntax of the tvdsvr command, refer to “ TotalView Debugger
Server Command Syntax” on page 299.

If desired, you can substitute adifferent command for r sh, but the command must
invoke the tvdsvr process with the arguments shown (—callback and —set_pw).

Note: If you're not sure whether rsh works at your site, try the
"rsh hostname" command from an xter m, where hostname
isthenameof thehost onwhichyouwanttoinvoketheremote
process. If this command prompts you for a password, you
must add the host name of the host machine to your .rhosts
file on the target machine for TotalView to invoke tvdsvr

properly.

For example, although the rsh command provides reasonabl e security, your site
may prefer to invoke remote processes with amore secure command. As another
example, you could even use a combination of the echo and telnet commands:
echo %D %L %P %V; telnet %R
Once telnet establishes the connection to the remote host, you could use the cd
and tvdsvr commands directly, using the values of %D, %L, %P, and %V that
were displayed by the echo command:
% cd directory

% tvdsvr —callback hostname: portnumber —set_pw password

If you have no command for invoking a remote process, you cannot use the auto-
launch feature and should disableiit.

For information on the r sh command, refer to the manual page supplied with your
operating system.

TotalView User's Guide 67



CHAPTER 4: Setting Up Remote Debugging Sessions

Changing the
Arguments

Y ou can a'so change the command-line arguments passed to rsh (or whatever
command you select to invoke the remote process).

For example, if the host machine does not mount the same filesystems as your
target machine, it may need to use a different path to access the executable to be
debugged. If thisisthe case, you could change % D to an appropriate directory on
the target machine.

If your remote executable reads from standard input, you cannot use the—n option
withr sh because this causesthe remote executableto receive an EOF immediately
on standard input. If you omit —n, the remote executabl e reads standard input from
the xterm in which you started TotalView. Therefore, if your remote program
reads from standard input, you should invoke tvdsvr from an xter m window. Use
the following command string to launch the debugger server:

rsh %R — "cd % && xterm —di spl ay hostname: 0 —e tvdsvr —cal | back % —set _pw %W
—verbosity W

The Connection
Timeout

Now, each time Total View launchestvdsvr, anew xter m appears on your screen
to handle standard input and output for the remote program.

When Total View automatically launchestvdsvr, it waitsfor 30 secondstoreceive
asuccessful connection from tvdsvr. If TotalView receives nothing, it times out.
If desired, you can specify atimeout of anywhere between 1 and 3600 seconds (1
hour).

Note:  If younoticethat TotalView failstolaunchtvdsvr (asshown
in the xterm window from which you started TotalView)
before the timeout expires, you can press CTRL-C in any
TotalView window to have Total View terminate the launch.
Otherwise, TotalView terminates the launch when the
timeout occurs.

To change the timeout for every TotalView session, you can set an X resource.
See “totalview* serverLaunchTimeout: n” on page 278 for more information.

68 TotalView User's Guide



Starting the Debugger Server for Remote Debugging

Disabling If changing the auto-launch options will not make the auto-launch feature useful
Auto-L aunch for you, you can disable the auto-launch feature and start tvdsvr manually. Y ou
can disable the auto-launch feature in several different ways:

* When you change the auto-launch options, as described in “Changing the
Options’ on page 69, deselect the TotalView Debugger Server Auto
Launch Enabled checkbox at the top of the dialog box. This disables auto-
launch for your current TotalView session.

* When you debug the remote process, as described in “ Debugging Remote
Processes’ on page 60, specify both a host name and port number in the
bottom section of the New Program Window dial og box. Thisdisablesauto-
launch for the current connection.

» Set an X resource that disables auto-launch, as described in
“totalview* serverLaunchEnabled: {true | false} " on page 277. Thisdisables
auto-launch for every TotalView session.

Note:  If you disable the auto-launch feature, you must start tvdsvr
before you load a remote executable or attach to aremote

process.
Changing the To actually change the server launch command or the connection timeout used by
Options TotalView tolaunch tvdsvr, or to actually disablethe auto-launch feature entirely,

you use the server launch window command. To do so:

1. Fromtheroot window, select the Server Launch Window menu command.
A dialog box appears, as shown in Figure 28.

B8] Tortalbies Dediiesr Seviee AUto Lmswh Essdilesd

Sarear lamch cossdand

st -0 T O b tadser -] [fewe 8 -get pei SF —ssfaeins LY
Lomection timouk Lin sscomdell

=1 [Germies | [=— |

Figure28. Dialog Box for Launching Debugger Server

TotalView User's Guide 69



CHAPTER 4: Setting Up Remote Debugging Sessions

2. Change the desired options.

3. PressReturn.

Note:  If you make a mistake or decide you want to revert to the

default option settings in the dialog, select the Defaults
button. Y ou canrevert to the default settingseven if you used
an X resource to change the settings. Then, to apply the
original option settings, you need to select the OK button.

Starti ng the If you cannot tail or the auto-launch feature to work on your system, you can start

Debuaaer the debugger server manually if needed. The disadvantage of this method is that
99 itisinsecure: other users could connect to your instance of tvdsvr and begin using

Server your UNIX UID.

Manually

To start tvdsvr manually:

1. From the root window, select the Server Launch Window command. A

70 TotalView User's Guide

dialog box appears, as shown in Figure 28.

Deselect the TotalView Debugger Server Auto Launch Enabled checkbox
to disable the auto-launch feature.

Press Return.
Log in to the remote machine and start tvdsvr:
% tvdsvr —server
The tvdsvr command prints out the port number used and the password

assigned and then begins listening for connections. Be sure to make note of
the password; you'll need to enter it later in step 9.

If the default port number (4142) is not suitable, you need to use the
—port or —search_port options with the tvdsvr command. For details, refer
to “TotalView Debugger Server Command Syntax” on page 299.

From the root window in TotalView, select the New Program Window
command. A dialog box appears.
Enter the name of the executable in the top of the dialog.

Enter the hostname:portnumber in the bottom of the dialog.



Starting the Debugger Server for Remote Debugging

8. PressReturn.
TotalView now attempts to establish a connection to tvdsvr.

9. When TotalView prompts you for the password, enter the password that
tvdsvr displayed in step 4.

Figure 29 summarizes the steps used when you start tvdsvr manually.

Host machine

. 9. Makes
TotaView connection

:( tvdsvr )
) | Remote executable |
4. Listens

Target machine

Figure29. Manua Launching of Debugger Server

TotalView User'sGuide 71



CHAPTER 4: Setting Up Remote Debugging Sessions

Debugging Over a Serial Line

In addition to debugging over a TCP/IP socket connection, TotalView allowsyou
to debug over aserial line. However, in cases where anetwork connection exists,
you will probably want to use TCP/IP sockets remote debugging for better
performance.

Y ou will need to have two connectionsto the target machine. One connection will
be for the console and the other dedicated for use by TotalView. Do not try to use
one seria line; TotalView cannot share a serial line with the console.

Figure 30 shows an example Total View debugging session over a seria line. In
thisexample, Total View isrunning on ahost machine and communicating over a
dedicated serial line with the Total View Debugger Server running on the target
host. A VT100 terminal isconnected to thetarget host’ s console linewhich allows
you to type commands on the target host.

Console
i VT100
Host machine Line
[otalView
E i; - ia Total View Debugger Server )|
Li nle | Remote executable 4
Target machine

Figure30. TotalView Debugging Session over a Seria Line

72 TotalView User’'s Guide



Start the
TotalView
Debugger
Server

Starting
TotalView on a
Serial Line

Debugging Over a Seria Line

To start aTotal View debugging session over aseria line from the command line,
you must first start the TotalView debugger Server.

Through the consol e connected to the target machine, issue the command to start
the Total View Debugger Server (tvdsvr) and specify the name of the serial port
device on the target machine. The syntax of the TotalView Debugger Server
command is:

% tvdsvr —serial device[:options]
where deviceisthe name of the serial line device and optionsare optionsto control
theserial line onthetarget machine. The Total View Debugger Server will wait for
TotalView to establish a connection.
For example:
% tvdsvr —serial /dev/com1:baud=38400
TotalView Debugger Server 3.8.1 (ICCDP protocol level 17, rev 15)
Copyright 1996-1998 by Dolphin Interconnect Solutions, Inc. ALL
RIGHTS RESERVED.
Copyright 1989-1996 by BBN Inc.
Currently theonly optionyou areallowed to specify isthebaud rate, which defaults
to 38400.
Start Total View onthe host machine and include the name of the serial line device.
The syntax of the TotalView command is:
% totalview —serial device|:options] filename
where device isthe name of the serial line device on the host machine, optionsare
options to control the seria line on the host machine and filename is the name of
the executable file. TotalView will connect to the TotalView Debugger Server.
For example:

% totalview —serial /dev/term/atest_pthreads

Currently theonly optionyou areallowed to specify isthebaud rate, which defaults
to 38400.

TotalView User's Guide 73



CHAPTER 4: Setting Up Remote Debugging Sessions

New Program To start a Total View debugging session over aserial linewhen you are aready in
Window TotalView, do the following:

1. Start the TotalView Debugger Server. See “ Start the Total View Debugger
Server” on page 73.

2. Issuethe New Program Window (n) command from the root window to
display the New Program Window dialog box, shown in Figure 31.

3. Enter the name of the executable file in the Executable file namefield.

4. Enter the name of the serial line device in the Program location field, and
select the Serial line radio button.

5. PressReturn or select OK.

[ —=zr—=r———r——r—r——r——r—r =]

Essinitablde L& i)
Faltar

B Find o oragle B B0 siade
0 [reale & sou process windes

MLach Lo g Lding gt o oore FLle dor Blank OF monels

W RLach Le e eaialing podess {Enles FIID
) [zra File (Ervier cora File nasal

Frogram location for blank &f loceli:

ST R D |

) Femate host (Enter roscte borl rness o 1P sddeesd
i Sarisl lisa |Enksr device sessl

Figure31. New Program Window Dialog Box

74 TotalView User's Guide



CHAPTER5:
Setting Up Parallel Debugging
Sessions

This chapter explains how to set up TotalView parallel debugging sessions for
MPI, PVM, or Portland Group HPF applications. In this chapter, you will learn
how to debug:

* MPI and IBM PE applications

* PVM or DPVM applications

» Portland Group HPF applications
For tips on debugging parallel applications, see “Parallel Debugging Tips,” on
page 110.

For information on how to set up abasi c debugging session, see Chapter 3, “ Setting
Up a Debugging Session,” on page 35.

For information on how to set up aremote debugging session and onthe Total View

debugger server, see Chapter 4, “ Setting Up Remote Debugging Sessions,” on
page 59.

TotalView User's Guide 75



CHAPTER5: Setting Up Parallel Debugging Sessions

Debugging MPI Applications

Y ou canuse Total View to debug your Message Passing I nterface (MPI) programs.
With Tota View, you can:
» Automatically acquire processes at start-up
» Attachtoaparallel program and automatically acquire the parallel processes
» Display the message queue state of a process
Automatic process acquisition at start-up is supported for the MPI
implementations:

* MPICH version 1.1.0 or later running on any platform that is supported by
both TotalView and MPICH (see “ Debugging MPICH Applications,” on

page 77)

» Digital MPI (DMPI) running on Digital Unix on Alpha (see “ Debugging
Digital MPI Applications,” on page 81)

* IBM MPI Parallel Environment (PE) running on AlX on RS/6000 and SP
(see “Debugging IBM MPI (PE) Applications,” on page 82)

* SGI MPI running on IRIX on MIPS processors (see “ Debugging SGI MPI
Applications,” on page 86)

For moreinformation on message queue display, see“ Displaying Message Queue
State,” on page 87.

For tips on debugging paralel applications, see “Parallel Debugging Tips,” on
page 110.

76 TotalView User's Guide



Debugging MPICH Applications

Starting
TotalViewon an
MPICH Job

Debugging MPICH Applications

To debug Message Passing I nterface/Chameleon Standard (MPICH) applications
you must use MPICH version 1.1.0 or later on a homogenous collection of
machines. If you need a copy of MPICH, it is available at no cost from Argonne
National Laboratory at http://www.mcs.anl.gov/mpi.

Note:  Please see the TotalView release notes for information on
how to patch your MPICH 1.1.0 distribution.

Y ou should configure the MPICH library to use either the ch_p4, ch_shmem,
ch_Ifshmem, or ch_mpl devices. For networks of workstations, ch_p4 isthe
normal default. For shared-memory SMP machines, ch_shmem isthe default. On
an IBM SP machine, use the ch_mpl device. The MPICH source distribution
includesall of these devices and you can choose which to use when you configure
and build MPICH on your machine.

Note:  When you configure MPICH, you must ensure that the
MPICH library maintains all of the information required by
TotalView. Use the —debug option with the MPICH
configure command.

See “Displaying Message Queue State,” on page 87 for message queue display.

Y ou must have both TotalView (totalview) and the TotalView Debugger Server
(tvdsvr) in your path when you start an MPICH job under TotalView’s control.
Use the MPICH mpirun command that you customarily use and add the—tv flag:
% mpirun [MPICH-arguments] —tv program [program-arguments]
For example:
% mpirun —np 4 —tv sendrecv
The MPICH mpirun command uses the value of the environment variable
TOTALVIEW asthe command that starts the first process in the parallel job.

Therefore, by setting thisenvironment variable, you can useadifferent Total View,
or pass command line optionsto TotalView.

TotalView User's Guide 77



CHAPTER5: Setting Up Parallel Debugging Sessions

For example, you can make mpir un invoke TotalView withthe—no_stop_all flag
by issuing the C shell command:

% setenv TOTALVIEW "totalview —no_stop_all”

Onworkstations, TotalView startsthefirst processof your job, the master process,
under the control of the debugger. Then, you can set breakpoints, and debug your
code as usual.

OnthelBM SP machine, the mpirun command usesIBM’ s poe command to start
an MPI job. The MPICH mpirun command must still be used on the SP to start

an MPICH job., including the use of the—tv flag. However, the details of process
start-up are different since poeis being used to start the MPI program. For details
of using TotalView with poe, see “ Starting Total View on a PE Job,” on page 83.

When you let code run through the call to MPI_Init(), Total View automatically
acquires the other processes that make up your parallel job. A dialog box appears
asking if you want to stop the spawned processes. This allows you to stop all of

the processesin MPI_Init() so you can check their states before they run too far.

See Figure 32.
Frooess sendrsr. 0 hag oalled WPL_[nit
Do g wirk ba wlop bhe spared processes in WD Init 7

Figure32. Dialog Box for Stopping Spawned Processes

Answer Yes, or typey, if you want to stop the spawned processes.

Answer No, or type n, if you want the processes to continue to run.

TotalView automatically copies breakpoints from the master processto the dave
processes as it acquires them. This allows you to set up breakpointsin the slave
processes by placing them in the master process. Y ou do not have to first stop the

daveprocessesin MPI_Init(). Next, Total View updates the root window to show
all the newly acquired processes.

78 TotalView User’'s Guide



Debugging MPICH Applications

Attachi ng to an TotalView allowsyou to attach to an MPICH application evenif it was not started
under the control of the debugger. To attach to arunning MPICH job, do the
MPICH Job following:

1. Start TotalView in the normal manner. See “ Starting the TotalView
Debugger,” on page 37.

2. Issuethe Show All Unattached Processes (N) command from the root
window. A new window appearson your screen displaying the Processesthat
TotalView doesn’'t own window, as shown in Figure 33.

E827% Processes that TotalView doesn’t own 78887
i
Localt 9 processes, B attachable
LHERE T, Csarad gos
24258 R .. ./sendrecy
20
22 vran
21140 R rsh
23954 R 4. /3ENdrECY
21360 R Ahomesskahn/pym3s 1 ibsRSEK pumd3
22166 R rzhd ||
H

Figure33. Processesthat TotalView doesn’t own Window

3. Onworkstation clusters, attach to the first MPICH process.

Normally, the first MPICH process is the highest process with the correct
image name in the process list. Other instances of the same executable will
either be

* Thep4 listener processesif you have configured MPICH with ch_p4

» Additional slave processesif you have configured MPICH with
ch_shmem or ch_lfshmem

* Additional slave processesif you have configured MPICH with ch_p4
and have a machine file that places multiple processes on the same
machine

* OnanlIBM SP, attachtothepoeprocessthat started your job. For details,
see “ Starting Total View on a PE Job,” on page 83.

Diveinto this process to attach to it.

TotalView User's Guide 79



CHAPTER5: Setting Up Parallel Debugging Sessions

4. After you attach to the processes, TotalView asksif you also wish to attach
to the slave MPICH processes. If you do, pressReturn or choose Yes. If you
do not, select No.

If you choose Yes, Total View starts the server processes and acquires all of
the MPICH processes.

In some situations, the processes you expected to see may not exist (for example,
they may have crashed or exited). TotalView acquiresall the processesit can and
thenwarnsyouif it could not attach to some of them. Y ou can debug the processes
TotalView did acquire. If you attempt to dive into a process that no longer exists
(for example, through the source or target fields of a message state display),
TotalView gives you a message that the requested process no longer exists.

MPICH P4 If you are using MPICH with an explicit P4 procgroup file (by using the {p4pg

. flag), you must make sure you use the same absol ute path namein your procgroup
procgroup Files fileand onthe mpirun command line. If your procgroup file contains different path
names that resolve to the same executable, Total View treats each path name as a
separate instance of the executable, which causes debugging problems.

Y ou must usethe same absol ute pathname of the executable on both the Total View
command line and in the procgroup file. For example:

% cat p4group

local 1 /users/smith/mympichexe

bigiron 2 /users/smith/mympichexe

% mpirun —p4pg p4group —tv /users/smith/mympichexe

In this example, TotalView does the following:

1. Readsthe symbols from the executable mympichexe only once
2. Places MPICH processes in the same Total View share group

3. Names the processes mypichexe.0, mympichexe.1, mympichexe.2, and
mympichexe.3.

If Totalview assigns names such as mympichexe<smympichexe>.0, thereisa
problem and you should check the contents of your procgroup file and mpirun
command line.

80 TotalView User's Guide



Debugging Digital MPI Applications

Starting
TotalView on a
Digital MPI Job

Attachingtoa
Digital MPI Job

Debugging Digital MPI Applications

Y ou can debug Digital MPI applications on the Digital UNIX Alphaplatform. To
use TotalView with Digital MPI, you must use Digital MPI version 1.7.

See “Displaying Message Queue State,” on page 87 for message queue display.
Digital MPI programs are normally started with the dmpirun command. To start
under the control of TotalView, simply use TotalView asif you were debugging
dmpirun.

% totalview dmpirun —a dmpirun-command-line
TotalView will start up and show you the code for the main program in dmpirun.
Sincethisis not normally of interest, you should let the program run by using the

Go Process (g) command.

The dmpirun command runs and starts all of the MPI processes. TotalView will
acquire them and then ask you whether you want to stop them all.

Note:  There may be problems with re-running Digital MPI
programs under Tota View control. These have to do with
resource allocation issues within Digital MPI. Consult the
Digital MPI manuals and rel ease notes for information on
how to clean up the MPI system state using mpiclean.

To attach to arunning Digital MPI job, attach to the dmpirun process that started
thejob. Once you have attached to the dmpirun process, Total View displaysthe
same dialogue as it does with MPICH. (See step 4 on page 80, included in
“Attaching to an MPICH Job,” on page 79.)

TotalView User's Guide 81



CHAPTER5: Setting Up Parallel Debugging Sessions

Debugging IBM MPI (PE) Applications

Y ou can debug IBM MPI Parallel Environment (PE) applications on the IBM
RS/6000 and SP platforms.

To take advantage of TotalView’ sautomatic process acquisition capabilities, you
must be running release 2.2 or later of the Parallel Environment for A1X. If you
aren’'t running release 2.2, you can run TotalView on release 2.1 if you also load
PTF 15.

See “Displaying Message Queue State,” on page 87 for message queue display.

Pr epar i ng to To debug a PE application, you need to prepare by doing the following:

Debu_g a _PE 1. If you are using switch-based communications (either “|P over the switch”

Application or “user space’) on an SP machine, you must configure your PE debugging
session so that TotalView can use “IP over the switch” for communicating
with the Total View Debugger Server, by setting adaptor _useto shared and
cpu_useto multiple.

Set these up by doing at |east one of the following:
» If youareusing aPE host file, add shared multipleafter all host names
or pool IDsin the host file.

» Whether or not you have a PE host file, enter the following arguments
on the poe command line:

—adaptor_use shared —cpu_use multiple

» If youdo not want to set the above argumentsin the poe command line,
set the following environment variables before starting poe:

% setenv MP_ADAPTOR_USE shared
% setenv MP_CPU_USE multiple
When using “1P over the switch,” the default is usually shared adapter use

and multiple cpu use, but to be safe, set it explicitly using one of the above
techniques.

82 TotalView User's Guide



Starting
TotalView on a
PE Job

Debugging IBM MPI (PE) Applications

2. You haveto be able to use remote login using rsh. To do this, add the host
name of the remote node to the /etc/hosts.equiv file or to your .rhostsfile.

When the program is using switch-based communications, TotalView tries
to start the Total View Debugger Server using the rsh command with the
switch host name of the node.

3. When you are using switch-based communications, you must run Total View
on one of the SP or SP2 nodes. Since TotalView uses “IP over the switch”
in this case, you cannot run TotalView on an RS/6000 workstation.

4. TotaView automatically setsthe timeout value at 600 seconds. If you get
communicationstime-outs, you may need to set the value at ahigher number,
asin the following example:

% setenv MP_TIMEOUT 1200

Note: timeout cannot be set through the poe command line.

Parallel Environment (PE) programs can normally be run directly from the
command line with the following syntax:

% program [arguments] [PE_arguments]
They can aso be run under the control of the poe command, asin the following:
% poe program [arguments] [PE_arguments]
However, TotaView isdifferent in thisregard. If you start Total View on a PE
application, it requires that you start on the poe command. The syntax of the
command is:
% totalview poe —a program [arguments] [PE_arguments]

For example:

% totalview poe —a sendrecv 500 —+mpool 1

TotalView User's Guide 83



CHAPTER5: Setting Up Parallel Debugging Sessions

Setting
Breakpoints

After Total View isrunning, you can start the poe process, which in turn, startsthe
parallel processes. Issue the Go Process (g) command from the process window.
A dialog box comesup asking if you want to stop the parallel tasks. See Figure 34.

5 pe b narned the pargllel resks, .
soa winh b3 iRy tha parellal tebs before they enter WIIH

StartingParallél
Tasks

Figure34. Pardlel Tasks Dialog Box

If you want to set breakpoints in your code at this point, answer Y es to stop the
processes. TotalView initially stopsthe parallel tasks, so you can set breakpoints.
A program window for the first parallel task appears, in which you can set
breakpoints and control the parallel tasks, using normal TotalView commands.

If you have already set and saved breakpointsin afile and you want to reload the
file, may answer No. The paralél tasks continue running, but first TotalView
automatically reloads your breakpoints.

After you set breakpoints, you can start all of the parallel tasks by issuing the Go
Group (G) command from the parallel task program window.

Note:  None of the parallel tasks will get to thefirst line of codein
main until al of the parallel tasks have started.

Y ou should be very cautious in placing breakpoints at or before the line that
containsthecall to MPI_Init (or MPL _Init), because time-outs occur during the
initialization process. Once any of the parallel processesisallowed to proceed into
the MPI_Init or MPL _Init call, all of the parallel processes should be allowed to
proceed through this call within a short time. For more information on this, see
“Avoiding unwanted time-outs,” on page 112.

84 TotalView User's Guide



Attachingtoa
PE Job

AttachfromaNode
Running poe

Attach from Node
Not Running poe

Debugging IBM MPI (PE) Applications

Totakefull advantage of Total View’ spoe-specific automation, you need to attach
to poeitself, and let TotalView automatically acquire the poe processes on its
variousnodes. Thisset of acquired processeswill includethe process(es) you want
to debug.

Y ou attach to the poe processes the same way you attach to other processes. For
details on attaching to processes, see “ Attaching to Processes,” on page 40.

To attach Tota View to poe from the node running poe, start TotalView in the
directory of the debug target. If you cannot start TotalView in the debug target
directory, you can start TotalView by editing the Total View Debugger Server
(tvdsvr) command line before attaching to poe. See “ The Server Launch
Command,” on page 66.

In the TotalView root window, bring up the unattached processes window, find
thepoeprocesslistinyour root window, and attachtoit by divingintoit. Total View
launches TotalView Debugger Servers as necessary.

TotalView updates the root window and opens a process window for the poe
process, which you just dove on. In the root window, find the process you want to
debug and dive on it to open a process window from which you can control and
debug the target process.

If some source code is available on-line but does not display in the source code
pane of the process window, you may have to issue the Display/Director y/Edit
(d) command and specify more directoriesto search.

To attach TotalView to poe from a node not running poe, follow the same
procedures asin attaching from anode running poe, except, since you did not run
TotalView from the node running poe (the start-up node), you will not be able to
see poe on the process list in your root window and you will not be ableto start it
by diving into it.

To get poe on the processlist in your root window, connect Total View to the start-
up node. For details on how to do this, see” Connecting to Remote Machines,” on
page 63 and “ Attaching to Processes,” on page 40. Then, update the list of
processes in the Processes that Total View doesn’t own window by selecting
Update Process List (u) from the menu. In the area headed
<startup_node_name>, look for the process named poe and continue as if
attaching from a node running poe.

TotalView User's Guide 85



CHAPTER5: Setting Up Parallel Debugging Sessions

Starting
Totalview with
SGI MPI

Attachingto an
SGI MPI Job

Debugging SGI MPI Applications

TotalView can acquire processes started by SGI MPI version 3.1 — part of the
Message Passing Toolkit (MPT) 1.2 package.

Message queuedisplay issupported by release 1.3 of the M essage Passing Toolkit.
See “Displaying Message Queue State,” on page 87 for message queue display.

To start an SGI MPI program under TotalView control use TotalView asif you
were debugging mpirun itself:

% totalview mpirun —a mpirun-command-line

TotalView starts up and shows you the machine code for the SGI MPI mpirun.
Since you are not usually interested in debugging this you should let the program
run by using the Go Process (g) command.

The SGI MPI mpirun command executes and starts all of the MPI processes.
TotalView acquiresthem and then asksif you want to stop them at start-up. If you
do stop them, Total View halts them before they enter the main program. Y ou can
then enter breakpoints as appropriate.

If you set averbosity level that allows informational messages, TotalView also
prints amessage showing the name of the array and the value of the array services
handle (ash) to which it is attaching.

To attach to arunning SGI MPI job, attach to the SGI MPI mpirun process that
started thejob. Onceyou have attached tothe SGI MPI mpir un process, Total View
displaysthe dialog as it does with MPICH. (See step 4 on page 80, included
“Attaching to an MPICH Job,” on page 79.)

86 TotalView User's Guide



Displaying Message Queue State

M essage Queue
Display Basics

Displaying M essage Queue State

The Tota View message queue display (MQD) feature allows you to display the
message queue state of your MPI program. Thisisavery useful debugging feature
for determining the cause of message passing deadlocks.

To use the message queue display feature, you must have the correct version of
MPI for your platform, as follows:

e MPICHversonl1.1.0o0r1.1.1
» Digital MPI (DMPI) version 1.7

* IBM MPI Paralel Environment (PE) version 2.3 or 2.4; but onlyfor programs
using thethreaded IBM MPI libraries. Thisfunctionality isnot availablewith
earlier releases, or with the non-thread-safe version of the IBM MPI library,
since these libraries do not maintain information accessible to Total View.
Therefore, to use the TotalView MQD feature with IBM MPI applications,
you should compile and link your code using the mpcc_r, mpxIf_r, or
mpxIf90_r compilers.

» For SGI MPI Total View messagequeuedisplay, you must obtaintheM essage
Passing Toolkit (MPT) release 1.3. Check with SGI for availability.
TotalView contains the necessary changes to display message queue state
with this version of SGI MPI, so no TotalView changes should be required.

After an MPI process returns from the call to MPI_Init(), you can display the
internal state of the MPI library by issuing the M essage State Window (m)
command in the Process State | nfo submenu of the process window. TotalView
opens a message state window for the process, as shown in Figure 35.

The contents of the message state window are valid only when the processis
stopped. The message state window displays the state of each of the MPI
communicators that exist in the process. In some MPI implementations, such as
MPICH, each user-visible communicator is implemented as two internal
communi cator structures, onefor point-to-point, theother for coll ectiveoperations.
TotalView shows both structures.

Note: Y oucannot edit any of thefieldsinthemessage statewindow.

TotalView User's Guide 87



CHAPTER5: Setting Up Parallel Debugging Sessions

Process name

Hessage State for "éendrecu+0" (20003, 13

Communicator name MPI_COMM_WORLD

Communicator size— |

Pending receives

Unexpected messages —J- PI_COMM_WORLD_collective
amm_zize 2
amm_r-ank, 0

Pending receives H

Unexpected messages 1 hone

Fending sends i

Pending sends

Pending sends

FComm_size 2
r Camm_tank. ]

Rank in communicator J_|'F'E”':IinEl receives

+

*
rlnexpected messages § none

*

+*

Figure35. Message State Window

For each communicator, TotalView displays the following fields:

88 TotalView User's Guide

Name of the communi cator. M Pl namesthe pre-defined communicatorssuch
asMPI_COMM_WORLD. Note:

MPICH 1.1 and Digital Unix MPI aso provide the MPI-2
communicator naming functions, MPI_NAME_PUT and
MPI_NAME_GET, soyou can associateanamewith acommunicator.
If youuse MPI_NAME_PUT to name a communicator, TotalView
uses the name you gave it when displaying the communicator, so you
do not have to guess which communicator is which.

IBM MPI and SGI MPI do not implement the M PI-2 communicator
naming functions, therefore only pre-defined communicators are
named. For user-created communicators, the integer value that
represents the communicator is displayed. Thisisthe value that a
variable of type MPI_Communicator hasif it represents the given
communicator.

Comm_size gives the number of processesin the communicator. Thisisthe
same as the result of MPI_Comm_size() applied to the communicator.

Comm_rank givestherank inthe communicator of the processwhich owns
the message state window. Thisis the same as the result of
MPI_Comm_rank() applied to the communicator.



M essage
Operations

Displaying Message Queue State

» List of pending receive operations.

» List of pending unexpected messages (i.e., messages that have been sent to
this communicator but have not yet matched with areceive).

» List of pending send operations.

For each communicator, TotalView displaysalist of pending receive operations,
pending unexpected messages, and pending send operations. Each operation has
index value displayed in square brackets ([n]), and each operation may includethe

following fields:

Function

Type
Status

Sourceor Target

Actual Source

Tag

Actual Tag

The MPI function (IBM MPI only). The name of the
MPI function associated with the operation, e.g.,
MPI_Irecv.

TheMPI datatype (IBM MPI only). The MPI datatype
associated with the operation, e.g., MPI_INT.

The status of the operation. Operation status can be
Pending, Active, or Complete.

Thesourceor target process. Sourceistheprocessfrom
which the message should be received. Target isthe
process to which the message is being sent. Thisfield
shows the index of the process in the communicator,
andtheprocessnamein parentheses. Diveintothisfield
to display a process window. If the messageis being
receivedfromMPI_ANY_SOURCE, thenthedisplay
will show ANY.

For receive operations, if the Statusis Complete and
the SourceisANY, the receiving process.

Thetag value. If the message is being received with
MPI_ANY _TAG, then the display will show ANY.

For receive operations, if the Statusis Complete and
the Tag valueis ANY, the received tag value.

User Buffer, System Buffer, or Buffer

The address of the buffer. Dive into thisfield to view
a data window displaying the buffer contents.

TotalView User's Guide 89



CHAPTER5: Setting Up Parallel Debugging Sessions

Buffer Length or Received Length
The buffer length in bytes, shown in decimal and

hexadecimal.
MPI Process Todisplay moredetail, you candiveinto certainfiel dsin themessage statewindow.
Diving When you dive into a processfield, TotalView does one of the following:

* Raisesthe relevant process window if it exists
» Focuses an existing process window on the requested process

* If no suitable process window exists, creates a new process window for the
process

If there is no relevant process window and you want TotalView to create a new
process window instead of refocusing an existing process window, hold down the
Shift key with the dive button.

M PI Buffer Divi ng You canaso diveinto the buffer fields, causing anormal data window to open.
TotalView attempts to guess the correct format for the data, based on the length
and alignment of thebuffer. If Total View guessesincorrectly, you can edit thetype
field in the data window, as usual.

Note:  TotalView currently does not set the buffer type using the
MPI datatype. SomeMPI implementations, suchasMPICH,
donot maintainthetypeinformation. IBM MPI doesmaintain
the data type, however TotalView does not yet use it for
formatting the data buffer.

90 TotalView User's Guide



Displaying Message Queue State

Pendi ng Receive TotaView displays each pending receive operation in the pending receives list.
Oper ations Figure 36 shows examples of MPICH and IBM MPI pending receive operations.

Note:  TotalView displaysall of the receive operationsthat are
maintained by the IBM MPI library. Y ou should set the
environment variable MP_EUIDEVEL OP to the value
DEBUG if you want blocking operations to be visible,
otherwise only non-blocking operations are maintained. For
more details on the MP_EUIDEVEL OP environment
variable, consult the IBM manual Parallel Environment
Operations and Use.

MPICH Message State for "sendrecw,0" (22207,1)
MPI_COMM_WORLD
. . Comm_size 2
Diveto view process ot &
i X Pending receives

Operation index =y
Status Pending

One receive operation Source | L {sendrecy,1} |
Tag 2010 0000007 da
llzer Buffer | Dec000BE5C0 = (0000000 {0 |

Buffer Length 40000 {00003 0

Diveto view data

Unexpected nessages : none
Pending sends 1 hone
IBM MPI EE Message State For "poe<AlLer,1" ([blue099,%] 41138,1)
FPT _COMM_WORLD
Conm_size 2
Comm_-ank, 1
Pending receives
[al
i i Function MPI_Irecw
Additiona fields ——— Tupe 8 (P INTH
tatus Pending
. Source 0 {poe<ALLck, 00
Tag selection of ANY — Tag selection  AMY
llzer Buffer 020272268 - Ox00000000 {0}

Buffer Length 40 (0000000253

Figure36. Message State Pending Receive Operation

TotalView User's Guide 91



CHAPTER5: Setting Up Parallel Debugging Sessions

The unexpected messages portion of the display shows the envel ope information
for messages that have been sent to this communicator in this process, but which
have not yet been matched by areceive operation. Figure 37 shows an exampl e of
MPICH unexpected messages.

Unexpected
M essages

Mezzage State for "sendrecw, Q" (22235,1)
MPI_COMM_WORLT

Uzer Buffer
Buffer Length

Syztem Buffer
Buffer Length
Received Length

Comm_zize 2

Comm_rank, ]

Pending receives

[01
Status Pending
Source 1 {sendrecw,1}
Tag 2010 (x000007da)

O000BB5C0 —2 000000000 {0}
40000 {0x00003:400

Unexpected neszages
[0l
Status Complete
Source 1 {zendrecv,l)
Tag 2001 (00000071
System Buffer OOOC2208 = DuQOOON000 (0}
Buffer Length 40000 {0x00009c:40)
Received Length 40000 {0x00003c40)
[11
Status Complete
Source 1 {zendrecw,1}
Tag 2002 (0x000007d2 )

Coc000cbebl > 0x00000000 {0}
40000 { 00000340}
40000 {0x00003c40)

Figure37. Message State Unexpected M essages

92 TotalView User's Guide




Pending Send
Operations

Additional information————"taon-blocking send

Displaying Message Queue State

TotalView displays each pending send operations in the pending sends list.
Figure 38 shows an example of MPICH pending send messages.

RS R R R R

——— Mezsage State for "sendrecw,l" (22260,1)

MPI_COMM_WORLD

Comm_zize 2
Comm_r-ank 1
Pending receives none
Unexpected nessages @ none
Pending sends

EhE

[al
Status Complete
Target 0 {sendrecw, 0}
Tag 2001 COx000007d1 )
Buffer 0008350 > Ox00000000 {0}

Buffer Length 40000 00000940}
[11

Hon-blocking send

Status Complete

Target 0 {zendrecy, 0}

Tag 2002 (0000 7d2

Buffer 0005350 =2 Q00000000 {0} RER
Buffer Length 0000 {0x00009c40) L

Figure38. Message State Pending Send Operation

The MPICH implementation does not normally maintain information about
pending send operations. However at the time you configure MPICH, you can
compilein additional code to maintain alist of pending send operations. These
additional data structures are maintained if the program is started under control of
the Total View debugger. Otherwise they are not maintained, unless mpirun is
passed the —ksq (KeepSendQueue) flag.

Depending on the device for which MPICH was configured, blocking send
operations may or may not bevisible. However, if they are not displayed here, you
can see that these operations are taking place because the call is on the stack
backtrace.

If you attach to an MPI program which is not maintaining the send queue
information, the Message State display shows this message:

Pendi ng sends : no information avail able

TotalView User's Guide 93



CHAPTER5: Setting Up Parallel Debugging Sessions

M Pl Debuggi ng If you cannot successfully start Total View on MPI programs, check the following:

Troubleshooting

94 TotalView User's Guide

Can you successfully start MPICH programs without TotalView? The
MPICH code contains some useful scripts to help you verify that you can
start remote processes on all of the machinesin your machinesfile. (See
tstmachines in mpich/util.)

Doesthetvdsvr fail to start? Y ou must ensure that tvdsvr ison your PATH
asitiswhen you log in. Remember that r sh is being used to start the server,
and it does not pass your current environment to the process you started
remotely.

Y ou cannot get a message queue display if you get the following warning:

The synbols and types in the MPICH |ibrary used by
Total View to extract the nessage queues are not as
expected in the i mage <<your image nane>>. This is
pr obably an MPI CH versi on or configuration problem

Y ou need to check the following:

* Besureyouareusing MPICH 1.1.0 or later

» Besureyou configured it with the—debug flag. (To verify this, look in
the config.statusfile at the root of the MPICH directory tree).

Makesureyou havethecorrect MPI versionandyou haveapplied therequired
patches. Seethe Total View Release Notesfor themost up-to-dateinformation.

Under some circumstances, MPICH kills Total View with the SIGINT
signal.Y ou might see this behavior when you try to restart an MPICH job by
usingthe Total View Delete Program (* Z) commandinthe processwindow.
If TotalView exits and is terminated abnormally with Killed message from
theshell that started Total View, try settingthe Total View—ignore_control_c
command line option. For example:

% setenv TOTALVIEW "totalview —ignore_control_c"

% mpirun —tv /users/smith/mympichexe



Debugging PVM and DPVM Applications

Supporting
Multiple
Sessions

Debugging PVM and DPVM Applications

Y ou can debug applications that use the Parallel Virtual Machine (PVM) library
or the Digital UNIX Parallel Virtual Machine (DPVM) library with Totalview on
some platforms. Total View supports ORNL PVM 3.3.4 or later on the Digital
UNIX Alpha, Sun 4, Sun 5, RS/6000, and SGI IRIX platformsand DPVM 1.4 or
later on the Digital UNIX Alpha platform.

Note:  Seethe Total View Release Notes for the most up-to-date
information regarding your PVM or DPVM software.

For tips on debugging parallel applications, see “Parallel Debugging Tips,” on
page 110.

Whenyou debugaPVM or DPVM application, Total View becomesaPVM tasker,
which establishes a debugging context for the duration of your session. Y ou can
run:

* OneTotaView PVM or DPVM debugging session, per user, per architecture;
that is, different users cannot interfere with each other on the same machine,
or same machine architecture.

One user can start Total View to debug the same PVM or DPVM application
on different machine architectures. However, a single user cannot have
multipleinstancesof TotalView debugging thesame PVM or DPVM session
on a single machine architecture.

For example, suppose you start aPVM session on a set of Sun 4 and Digital
UNIX Alphamachines. In this scenario, you start two different Total View
sessions: one on a Sun 4 machine to debug the Sun 4 portion of the PYM
session, and oneonaDigital UNIX Alphamachineto debugtheDigital UNIX
Alpha portion of the PVM session. These two separate TotalView sessions
(Sun 4 and Digital UNIX Alpha) do not interfere with one another.

e Similarly, in one TotalView session, one user can run either aPVM
application or a DPVM application but not both.

If youarerunning TotalView onaDigital Alpha, you canhavetwo Total View
sessions, one debugging PVM and one debugging DPVM.

TotalView User's Guide 95



CHAPTER5: Setting Up Parallel Debugging Sessions

Setting Up
ORNL PVM
Debugging

Starting an
ORNL PVM
Session

To enable PV M, create asymboalic link from the PVYM bin directory:

$HOM E/pvm3/bin/$PVM_ARCH/tvdsvr to the TotalView Debugger Server
(tvdsvr).Withthislink inplace, TotalView canusethe pvm_spawn() call to spawn
the debugger server tasks.

For example, if tvdsvr isinstalled in the /opt/totalview/bin, you can use the
following command:

% In —s /opt/totalview/bin/tvdsvr $HOM E/pvm3/bin/$PVM_ARCH/tvdsvr

If the symbolic link does not exist, Total View cannot spawn the debugger server
and displays the following error:

Error spawni ng Tot al Vi ew Debugger Server: No such file

Start the ORNL PVM daemon process before you start Total View. Seethe ORNL
PVM documentation for information about the PV M daemon process and console
program.

1. Usethe pvm command to start a PVM console session, which will start the
PVM daemon. If PVM isnot running when you start TotalView (with PVM
support enabled), TotalView exits with the following message:

Fatal error: Error enrolling as PVMtask: pvmerror

2. If your application uses groups, start the pvmgs process before starting
TotalView. PVM groups are unrelated to Total View process groups. For
information about TotalView process groups, refer to “Examining Process
Groups,” on page 129.

3. Enable PVM support in TotalView using one of the following methods:

» Withan X resource; see“totalview* pvmDebugging: {true|false},” on
page 276. Y ouneedtorestart Total View after setting thisnew resource.
For more information, refer to “X Resources,” on page 263.

» Use command-line options to the totalview command:

—pvm Enables PVM support.
-Nno_pvm Disables PVM support

The command-line options override the X resource. For more
information on thetotalview command, refer to* Total View Command
Syntax,” on page 287.

96 TotalView User's Guide



Debugging PVM and DPVM Applications

4. Setthe TotalView directory search path to includethe PVM directories. The
list of directories must include those needed to find both executable and
sourcefiles. The actual list of directoriesyou need will vary, but you should
aways include the current directory and your home directory.

Y ou can set the directory search path using an X resource or the Set Search
Directory command. Refer to “totalview* searchPath: dirl[,dir2,...],” on
page 277 and “ Setting Search Paths,” on page 52 for more information.

For example, to debug the PV M examples, you can specify thefollowing list
of directories in the search path:

$HOVE

$PVM_ROOT/ xep

$PVM_ROOT/ xep/ $PVM_ARCH

$PVM ROOT/ sr ¢

$PVM ROOT/ sr ¢/ $PVM_ARCH
$PVM_ROOT/ bi n/ $PVM_ARCH
$PVM_ROOT/ exanpl es

$PVM_ROOT/ exanpl es/ $PVM_ARCH
$PVM _ROOT/ gexanpl es

$PVM_ROOT/ gexanpl es/ $PVM_ARCH

5. Verify that the default action taken by TotalView for the SIGTERM signal
is appropriate. Y ou can examine the default actions with the Set Signal
Handling M ode command in TotalView. Refer to “Handling Signals,” on
page 48 for more information.

PVM usesthe SIGTERM signal to terminate processes. By default,
TotalView stops a process when the process receives a SIGTERM signal,
which prevents the process from being terminated. If you want the PVM
process to terminate instead of stop, set the default action for the SIGTERM
signal to Resend.

Continue with “PVM/DPVM Automatic Process Acquisition,” on page 99.

TotalView User's Guide 97



CHAPTER5: Setting Up Parallel Debugging Sessions

Starti nga DPVM requires no additional user configuration. However, you must start the
: DPVM daemon processbeforeyou start Total View. Seethe DPVM documentation
DPVM Session for information about the DPVM daemon and console program.

1.

Use the dpvm command to start a DPVM console session, which will start
the DPVM daemon. If DPVM isnot running when you start Total View (with
DPVM support enabled), TotalView exits with the following message:

Fatal error: Error enrolling as DPVMtask: dpvmerror
Enable DPVM support using one of the following methods:

» With an X resource; see"totalview* DPVMDebugging: {true | false},”
on page 268. Y ou need to restart TotalView after setting anew X
resource. For more information, refer to “ X Resources,” on page 263.

» Use command-line options to the totalview command:

—dpvm Enables DPVM support.
—-no_dpvm Disables DPVM support

The command-line options override the X resource. For more
information on thetotalview command, refer to* Total View Command
Syntax,” on page 287.

Verify that the default action taken by Total View for the SIGTERM signa
is appropriate. Y ou can examine the default actions with the Set Signal
Handling M ode command in TotalView. Refer to “Handling Signals,” on
page 48 for more information.

DPVM usesthe SIGTERM signal to terminate processes. By defaullt,
TotalView stops a process when the process receives a SIGTERM signal,
which prevents the process from being terminated. If you want the DPVM
process to terminate instead of stop, set the default action for the SIGTERM
signal to Resend.

Note:  If you enable PVM support using X resources, and you wish

to use DPVM, you must use both —no_pvm and —-dpvm
command line options when you start Total View. Similarly,
if you enable DPVM support with X resources, use
—no_dpvm and pvm command line options to debug PVM.
Finally, wedo not recommend using X resourcesto start both
PVM and DPVM.

98 TotalView User's Guide



PVM/DPVM
Automatic
Process
Acquisition

Debugging PVM and DPVM Applications

This section describes how Total View automatically acquires PVM and DPVM
processesinaPVM or DPVM debugging session. Specifically Total View usesthe
PVM tasker feature to intercept pvm_spawn() calls.

When you start Total View as part of aPVM or DPVM debugging session, it takes
the following actions:

» TotalView checksto make sure there are no other PVYM or DPVM taskers
running. If TotalView finds atasker on any host that it is debugging, it exits
with the message:

Fatal error: A PYMtasker is already running on
host ' host'

» TotalView findsall the hostsinthe PVM or DPVM configuration. Using the
pvm_spawn() call, Total View startsa Total View Debugger Server (tvdsvr)
on each remote host that has the same architecture type as the host on which
TotalView isrunning. For each debugger server that Total View starts, it prints
the following message:

Spawni ng Tot al Vi ew Debugger Server onto PVM host
" host'

Note:  If youaddahost withacompatiblemachinearchitecture
to your PVM or DPVM debugging session after you
start TotalView, Total View automatically starts a
debugger server on that host.

After you start TotalView and it starts all the appropriate debugger servers,
TotalView intercepts every PVM or DPVM task that is created using the
pvm_spawn() call on the hosts that are part of the debugging session. If aPVM
or DPVM task iscreated on ahost with adifferent machinearchitecture, Total View
ignores that task.

When TotalView receivesaPVM or DPVM tasker event, it takes the following
actions:
1. TotalView automatically reads the symbol table of the spawned executable.

2. Ifasaved breakpointsfilefor theexecutableexistsand you havetheautomatic
loading of breakpoints enabled, TotalView loads the breakpoints for the
process.

TotalView User’'s Guide 99



CHAPTER5: Setting Up Parallel Debugging Sessions

Attachingto
PVM/DPVM

Tasks

100 TotaView User's Guide

3. TotalView asksif you want to stop the process before it enters the main()

routine.

If you answer Yes, TotalView stops the process beforeit enters main() (that
isbeforeit executes any user code). Thisallowsyou to set breakpointsin the
spawned process before any user code is executed. On most machine
architectures, if the processis statically linked, TotalView stopsit in the
start() routine of the crt0.0 module. If the processis dynamically linked,
TotalView stopsit just after it finishes running the dynamic linker. In either
case, the processwindow displays Assembler instructions, soyou needto use
the Function or File (f) command to display the source code for the main()
routine. For moreinformation on thiscommand, refer to “ Finding the Source
Code for Functions,” on page 116.

Y oucanattachtoaPVM or DPVM task, providing that thetask meetsthefollowing
criteria

The machine architecture on which the task is running is the same as the
machine architecture on which TotalView is running.

Thetask must be created. Inthe PV M tasksand configuration window, which
you will learn about next, thisisindicated when flag 4 is set.

The task must not be aPVM tasker. In the PVM tasks and configuration
window, thisisindicated when flag 400 is clear.

The executable name must be known. If the executable nameislisted as—,
then Total View cannot determine the name of the executable, which can
happen when a task was not created using the pvm_spawn() call.

To attach to aPVM or DPVM task, complete the following steps:

1.

Issue the Show All PVM Tasks (P) command from the Total View root
window.

The PVM tasks and configuration window is displayed, as shown in
Figure 39. Thiswindow displays current information about PVM tasks and
hosts, and TotalView automatically updates thisinformation as it receives
events from PV M.

Note:  Since PVM does not generate all the events needed, you can

use the Update PVM Task List (u) command to force a
refresh when necessary.




UNIX Process|D

Debugging PVM and DPVM Applications

If we apply the criteriafor attaching to tasksto the tasks shown in Figure 39,
you can attach to the tasks named xep and mtile becausethey haveflag 4 set,
but you cannot attach to the executables named tvdsvr and — because they

have flag 400 set.

. Diveon atask entry that meetsthe criteriafor attaching to tasks. TotalView

attaches to the task.
If the task to which you attached hasrelated tasks that Total View can debug,

TotalView asksif you want to attach to the relatives of the task.

If you answer Yes, TotalView attaches to al the related tasks.
If you answer No, TotalView attachesto only the task you dove on.

TotalView looks for attached tasks that are related to the task to which you
just attached, and if it finds any, it places them in the same program group.
If TotalView is already attached to atask you dive on, TotalView simply
opens and raises the process window for the task.

Parent Task 1D
Task ID |
_ MWMPWN Tazks pnd Confipuration @SS S S EEy
HOST TID FTID FID FLAG EXECUTAELE 3
vinhie 40001 0 5228 4 -
vinnie 40005 40001 5234 B xep
vinnie 40008 40005 5235 E mtile
albacore BO00E 40005 2929 E mtile
T — izzy ez 40005 1644 E mtile
asks alfie 100002 40005 20267 E mtile
swordfish 140002 40005 12214 E mtile
plum 180002 40005 25335 E mtile
albacore o007 i 2940 404 -
vinnie 40007 G007 5236 406 tudsur
HOST ITID ARCH=— SPEED
albacore B0000 SUM450L2 1000
— alfie | 100000 ALPHA 1000
Hosts tzzy | o000 SN | Tooo
plum | 180000 SG164 1000
swordfish | 140000 ALPHA 1000
inni 40000 SUM450L2 1000 gl
Daemon Task 1D &
Machine Architecture

Figure39. PVM Tasks and Configuration Window

TotalView User's Guide 101



CHAPTER5: Setting Up Parallel Debugging Sessions

Reserved
M essage Tags

Debugging
Dynamic
Libraries

Cleanup of
Pr ocesses

TotalView uses the following PV M message tags to communicate with the PV M
daemonsand TotalView Debugger Server. Avoid sending messagesthat usethese
reserved tags:

OxDEBO through OXDEBF

If the set of machinesin your PVM debugging session are running different
versionsof thesameoperating system, thedynamiclibrariescanvary frommachine
to machine. If thisisthe case, you may see strange stack backtrace results when
your program is executing inside adynamic library. To eliminate this problem,
make sureall of the hostsin your PV M configuration are running the sameversion
of the operating system and have the same dynamic librariesinstalled, or link your
programs statically.

Thepvmgsprocessregistersitstask D inthe PV M database. If thepvmgs process
is terminated, the pvm_joingroup() routine hangs because PVM does not clean
up the database. If this happens, you must terminate the PV M daemon and start it

again.

Total View attemptsto clean up the Total View Debugger Server daemons(tvdsvr),
which also act astaskers, but occasionally some of these processesdo not terminate.
If this happens, you must manually terminate the tvdsvr processes.

102 TotaView User's Guide



Debugging Portland Group, Inc. (PGI) HPF Applications

Debugging Portland Group, Inc. (PGI)
HPF Applications

TotalView allowsthe source level debugging of High Performance Fortran (HPF)
code compiled with the Portland Group HPF (PGHPF) compiler.

Note:  Debugging PGHPF programsrequires aseparate Total View
license key.

For tips on debugging parallel applications, see “Parallel Debugging Tips,” on
page 110.

TotalView supports the following platforms:

+ IBM RS/6000 and SP AIX 4.x
* SGI MIPSIRIX 6.x, for programs compiled with —64 only
* Sun Sparc SUnOS 5 (Solaris 2.x)
See the Total View Release Notes for supported PGHPF runtime configurations.

In addition to normal TotalView features, the Total View PGHPF support allows:

» Sourcelevel display of HPF code

» Sourcelevel breakpointsin HPF code

» Display of distributed arrays, with optional display of the owning processor
» Visualization of distributed arrays

» Visualization of the distribution of distributed arrays

» Automatic update of all copies of replicated scalar variables

However, there are still anumber of limitations:

» Digplay of user defined data typesis not yet supported.

» EVAL points and expressions are executed locally and cannot reference
distributed arrays (apart from the $visualize intrinsic, which does work).

TotalView User's Guide 103



CHAPTER5: Setting Up Parallel Debugging Sessions

Installing
TotalView for
HPF

Dynamically
Loaded Library

Youwill need aparallel runtimethat Total View understands. With Total View 3.8
and later, and PGHPF release 2.4, TotalView can track the process start-up used
by rpm or smp, the default PGHPF runtimelibraries. If you still want to use MPI,
then you need to ensure that the MPI implementation is supported by PGHPF and
TotalView. See “Debugging MPI Applications,” on page 76.

OnIBM SP, or clustersof RS/6000 machinesrunning IBM'sParallel Environment,
you can use any run time library that is started using the poe command.

On SGI IRIX, TotalView supports 64-bit PGHPF programs only. Y ou must
compile your PGHPF program with the —64 compiler option.

To debug PGHPF code, TotalView needsto be able to dynamically load the file
libtvhpf.so, which is distributed as part of the PGHPF product.

TotaView searches for thisfile in the following order:
1. TotalView attemptsto dynamically |oad theunadornedfile namelibtvhpf.so.

Thiswill succeed if:

» libtvhpf.soisin one of the directories on your dynamic library path
environment variable (LD_LIBRARY _PATH on Sun Sparc SunOS5,
IBM AlIX, and SGI IRIX if LD_LIBRARYN32_PATH is not set)

* SGI IRIX only: libtvhpf.so isin one of the directories on your —-n32
dynamic loader path (LD_LIBRARYN32_PATH)

2. If step 1fails, then Total View usesthe PGI environment variableto find the
Portland Group installation tree. If the PGl environment variable is not set,
then the default installation directory (/usr/pgi) istried instead.

Depending on the target architecture, Total View then searches the directoriesin
the order shown in Table 8.

Table8. PGHPF Dynamic Library Search Order

System Search Path

IBM RS/6000 and SP AIX 4.x $PGI/sp2/lib
$PGI/rs6000/1ib

Sun Sparc SUnOS 5 (Solaris2.x)  $PGl/solariglib

104 TotaView User's Guide



Debugging Portland Group, Inc. (PGI) HPF Applications

Table8. PGHPF Dynamic Library Search Order (Continued)

System Search Path
SGI MIPS IRIX 6.x $PGI/sgi/lib—n32
$PGI/sgi/lib-64

$PGl/origin/lib/mips4

If al of thisfailsto locate a copy of libtvhpf.so, then, if the Total View verbosity
level isnot silent, an error message is posted to tell you that the library could not
be found, HPF debugging is disabled, and TotalView proceeds to debug at the
intermediate Fortran level.

If you have acopy of libtvhpf.so, but Total View cannot locateit using the strategy
described above, then you should either move it to one of the places that will be
searched by default, or add its directory to your LD _LIBRARY _PATH.

Setti ng Up Set up the HPF compiler with the correct defaultsfor usewith MPICH, Tota View,
PGHPE the IBM parallel environment, and Fortran77, as in the following sections.

. If you have PGHPF release 2.4, therc files shou ready have been set up
Compiler f you have PGHPF release 2.4, the rc files should already have b
Defaults correctly, but they will use the default run time, that is, not MPI. If you want to

use an MPI runtime you should consult the PGHPF manuals.

Note:  With PGHPF version 2.4 and later, thereisno need to use an
MPICH based run time, and you can ignore this section.

Setti ng Up Y ou should follow the instructions in the PGHPF manual and MPICH manual to
M PICH ensure that you can build an HPF program and run it using MPICH. One way to
do thisisto create your own .pghpfrc file and add lines similar to the following:

# Set up to use my MPI with pghpf.
# Change the path to |ibnpi.a as appropriate
#

| NCLUDE $DRI VER/ . pghpfrc
set HPF_MPI =/ where_your _npi _lives/libnpi.a
set HPF_COWM LI BS="-I| pghpf _npi $P $HPF_MPI  $HPF_SOCKET"

TotalView User's Guide 105



CHAPTER5: Setting Up Parallel Debugging Sessions

Setting
TotalView
Defaults

Compiling HPF
for Debugging

Adding these lines to your .pghpfrc file will force pghpf to use the MPI
communicationslibrary without requiring that you specify it on the command line
at compilation time.

To debug HPF code, you will normally want to set the default behavior of
breakpointsand barrier breakpointsto not stop other processeswhen the breakpoint
is hit. For more information, refer to “Parallel Debugging Tips,” on page 110.

Other relevant HPF resources are “total view* hpf: { true | false},” on page 271 and
“totalview* hpfNode: {true | false},” on page 271.

To compile your HPF program for use with TotalView you should use the —.g and
—Mtotalview flags to pghpf when both compiling and linking. The—-Mtv flagis
the same as the -Mtotalview flag.

The —g flag on its own produces very confusing results. Y ou may see the HPF
source code, but none of the HPF debugging featureswill work. If TotalView flags
your HPF codeinthestack backtraceasbeingf77, thenyouhaveprobably forgotten
the -Mtv flag when compiling.

The —g flag directs the PGHPF compiler to output additional information into a
.Stb file. This contains the relationship between the HPF source file and the
intermediate F77 source. TotalView usesit to map HPF level entities (files,
functions, variables) to the executable image.

The—gflagisalso required on thelink step, since thisinstructs the HPF compiler
to produce a .stx file which indexes the external symbols in the program back to
their source files. This allows TotalView to read the .stb filesonly asthey are
required.

If you want to debug at the level of the generated Fortran code, then you will al'so
have to give the -M keepftn flag. Otherwise, these intermediate Fortran files are
deleted by the compiler once they have been compiled.

106 TotaView User's Guide



Starting HPF
Programs

PGHPF smp and
rpm libraries

Starting HPF
Programswith
MPICH

Workstation
Clusters Using
MPICH

IBM Paralle
Environment

Debugging Portland Group, Inc. (PGI) HPF Applications

The way in which an HPF parallel program is started depends on the machine on
which it isrunning and the choice of run timelibrary whichislinked into the HPF
code.

To start aprogram linked with these libraries under Total View control proceed as
if you were using TotalView to debug the program. If you normally start the code:

% foo—bah —-pghpf —np 6
you can debug it with this command:
% totalview foo —a —bah —pghpf —np 6
In aworkstation cluster environment using MPICH, you can debug your HPF
application with TotalView by using the —tv flag to the mpirun command.
So, where you might normally run your code with the following command:
% mpirun —p 4 foo
you can invoke Total View with the following command:

% mpirun —tv —np 4foo

Debuggingworkstation clustersusesthe samemechani smasdebuggingan MPICH
program, since a compiled HPF program is an MPICH program. For more
information, refer to “Debugging MPI Applications,” on page 76.

Inthe IBM paralel environment on an IBM SP or cluster of RS/6000 machines,
parallel programsare started with the poe command. To debug parallel codes, you
invoke TotalView on the poe command, for instance:

% totalview poe—a hpf_test procs 6

For more information, refer to “ Starting Total View on a PE Job,” on page 83.

TotalView User's Guide 107



CHAPTER5: Setting Up Parallel Debugging Sessions

HPF TotalView Thefollowing are the advantages of debugging HPF in TotalView:

Advantages

* You can display the contents of distributed arrays by diving on the array.

* You can seethe distribution of distributed arrays, for instance, onto which
node a particular element of adistributed array has been mapped.

* You can update replicated scalar variablesin all processes by updating the
valueinany process. If thevalueswerenot all thesameat thestart, Total View
givesyou awarning, and you haveto explicitly agree to the update before it
will take place.

* You can export adistributed array to the TotalView visualizer the same way
as any other array.

If you use the $visualize EVAL intrinsic, remember that EVAL code is executed
by every process. Therefore, you probably want to make this an non-shared action
point.

* You can export the distribution of an array to the visualizer to display it
graphically.

* You seethe HPF source and variables.

* You can set breakpointsin the HPF source code.

In the address display for data windows showing HPF variables, thereis an
additional field which tells you whether the variableis distributed [Dist] or
replicated [Repl]. If you update areplicated variable, then it is updated in all the
processes. A distributed variable will only be updated in its home process.

Y ou cannot edit the address of adistributed array. If you edit the address of a
replicated scalar, then it will be marked as distributed, since it no longer makes
senseto update all of the processes, as you do not know what is at that addressin
the other processes.

When you display an HPF distributed array, TotalView can also display thelogical
processor onwhich each element resides. Thedisplay of thisadditional information
can be changed for a single data window using the Toggle Node Display option
in the menu of the data window. Y ou can set the default for awhole TotalView

session by using the command line options—hpf_node or —-no_hpf_node, or by

using the X resource “totalview* hpfNode: {true | false},” on page 271. No matter
whichway you set thedefault, you can alwaystogglethe behavior in each window.

108 TotaView User's Guide



Debugging
gener ated
FORTRAN 77

Debugging Portland Group, Inc. (PGI) HPF Applications

By default, thisdisplay isdisabled. If it is enabled, then a distributed array will
look like Figure 40. Otherwise, the Node column isnot displayed and adistributed
array display looks the same as that of anormal array.

B black _uhite (17920,1) S

{at 0203133000 [Dist] Tupe: logical#4i:.:h j:t
Actual Type: logical#d{0:63,0:63)

Slices (1:l,::8)

Index Mode Value

(1,00 0 JFalzse, (00
£1,.8) 0 JFalse, (03
(1,167 0 Lfalse, (0}
(1,243 1 falze, (0)
1,323 1 Jfalse, (0}
1,400 1 LFalse, (0F
61,483 2 falze, (0)

2

JFalzse, (00

<l

Figure40. Block Distributed Array on Three Processes

To seethedistribution of an array, or a section of an array, use the Visualize
Distribution command from the data window menu. This command exports the
HPF processor number on which each selected element of the array residesto the
visuaizer. This command differs from the Visualize command, that exports the
values of the array elements, not the ownership information.

This capability is not available with the $visualize command, since distributions
arenormally static, so re-displaying them under program control does not seem to
be useful.

Y ou can debug at the generated Fortran level by starting Total View with the
—no_hpf flag or setting the X resourcetotalview* hpf to false. Total View will then
ignore the .stb and .stx files and show you the generated F77. (Remember to
compile with -Mkeepftn, or these fileswon't exist!). Alternatively, of course,
simply removing the .stx file will also cause TotalView not to recognize the code
as HPF.

Thereis no need to relink the HPF program to debug at the generated FORTRAN
level.

TotalView User's Guide 109



CHAPTER5: Setting Up Parallel Debugging Sessions

Parallel Debugging Tips

Whenyouaredebuggingyour parallel programs, thefollowing pointsareimportant
to remember.

General Parallel Herearesometipsthat are useful for debugging most parallel programs:

Debugging Tips

110 TotaView User's Guide

When you are debugging message-passing and other multiprocess programs,
itisusually easier to understand the program'’ s behavior if you change the
default stopping action of breakpoints and barrier breakpoints. By defaullt,
when one process in a multiprocess program hits a breakpoint, TotalView
will stop all the other processes. To change the default stopping action of
breakpoints and barrier breskpoints:

» Set the X resources “totalview* stopAll: {true | false},” on page 280
and/or “totalview* barrierStopAll: {true|false},” on page 266 to false.

» Specify the Total View command line options—no_stop_all on
page 297 and/or —no_barr_stop_all on page 289.

These settings cause the default breakpoint and barrier breakpoint behavior
to allow other processes to continue to run when one of the processesin a
group hits the breakpoint.

Theseoptionsflag only affectsthedefault behavior. Asusual, you can choose
the behavior for aspecific breakpoint, individually, by setting the breakpoint
properties in the action points dialog box. See “Breakpoints for Multiple
Processes’ on page 197.

TotalView has two features that make it easier to get all of the processesin
amultiprocess program synchronized and executing the line.

» Process barrier breakpoints and the process hold/rel ease features work
together to help you get control the execution of your processes. See
“Process Barrier Breakpoints’ on page 201.

» TheRun (toselection) Group (R) commandisaspecial kind of single-
stepping command that allows you to run a group of processesto a
selected sourceline or instruction. See” Group-Level Single-Stepping”
on page 134.



Parallel Debugging Tips

» Group commands are often more useful than process commands.

» Itisoften more useful to issue the Go Group (G) command, from the
Go/Halt/Step/Next/Hold submenu, to restart the whole application,
rather than the Go Process (g) command, and to issue the Halt Group
(H) command rather than the Halt Process (h) command.

» Thegroup-level single-stepping commands, such as Step Group (S)
and Next Group (N), allow you to single-step a group of processesin
aparallel. See”“ Group-Level Single-Stepping” on page 134.

» If you use aprocess-level single-stepping command in a multiprocess
program, TotalView may appear to be hung (it continuously displays the
watch cursor). If you single-step a process over a statement that cannot
completewithout allowing another processto run, and that processisstopped,
the stepping process appearsto hang. In parallel programs, this happens most
oftenif you try to single-step a process over acommunication operation that
cannot complete without the participation of another process. When this
happens:

* You can abort the single-step operation by pressing Control-C (*C) in
any TotalView window.

» Consider using a group-level single-step command instead.

* The TotalView root window has a feedback mechanism that helps you
determine where various processes and threads are executing. When you
select aline of code in the process window, the root window is updated to
give you visual feedback about which processes and threads are executing
that line. See “Displaying Thread and Process Locations” on page 140.

* You can view the value of avariable that isreplicated across multiple
processes or multiple threads in a single variable window. See “ Displaying
aVariablein All Processes or Threads’ on page 177.

* Youcanrestart aparallel program at any timeduring your debugging session.
If your program runs too far, you can kill the program by displaying the
Arguments/Create/Signal submenuinthe processwindow and selectingthe
Delete Program (" Z) command. Thiscommand killsthe master processand
all the slave processes. Y ou can then restart the master process (e.g, mpirun
or poe), and all of theslave processeswill berecreated. Start-up will befaster
inthesecircumstances, because Total View doesnot need to reread the symbol
tables or restart its server processes as they are already running.

TotalView User's Guide 111



CHAPTER5: Setting Up Parallel Debugging Sessions

MPICH Specific Here are some debugging tips that apply only to MPICH:

Debugging Tips

Y ou can pass flags to Total View through the MPICH mpirun command.

To pass flags to Total View when running mpirun, you can use the
TOTALVIEW environment variable. For example, you can cause mpirun
toinvoke TotalView with the—no_stop_all flag asin thefollowing C-shell,
example:

% setenv TOTALVIEW "totalview —no_stop_all”

If you start remote processes with MPICH/ch_p4, you may need to change
the way TotalView starts the servers.

By default, TotalView usesrsh to start its remote server processes. Thisis
thesamebehavior asch_p4. If you configureMPICH/ch_p4touseadifferent
start-up mechanism from another process, you will probably also need to
change the way that TotalView starts the servers.

For moreinformation about tvdsvr andr sh, see” The Auto-L aunch Feature,”
on page 64. For more information about r sh, see” The Server Launch
Command,” on page 66.

IBM PE Specific Here are some debugging tips that apply only to IBM MPI (PE):

Debugging Tips

112 TotaView User's Guide

Avoiding unwanted time-outs

Y ou can cause undesired time-outs if you place breakpoints that stop other
processtoo soon after calling M Pl _Init() or MPL _Init(). If you create"stop
all" breakpoints, it causesthefirst processto get to the breakpoint to stop all
the other parallel processes that have not yet arrived at the breakpoint. This
may cause atimeout.

To turn the option off, click with the right mouse button on the stop symbol
for the breakpoint. The breakpoint dialog box will come up, in which you
should deselect thebox |abeled* Stop All Rel ated Processeswhen Breakpoint
Hit.”

Controlling the poe process

Thepoeprocesscontinuesunder Total View control, but normally, you should
not attempt to start, stop, or otherwise interact with poe. The parallel tasks
require that poe continue to run for normal functioning. For this reason,



Parallel Debugging Tips

Total View automatically continuespoewhen you continueany of theparallel
tasks, if poe had been stopped.

Slow processes due to node saturation

If you try to debug a Parallel Environment for AIX program in which more
than three parallel tasks are run on a single node, the parallel tasks on each
such node may run noticeably slower than they would run if you weren't
debugging them.

This effect becomes more noticeable as the number of tasks increases, and,
in some cases, the parallel tasks may make hardly any progress. Thisis
because the Parallel Environment for AIX usesthe SIGALRM signal to
implement the communications operations, and the debugging interface in
AlX requiresthat the debugger intercept all signals. Asthenumber of parallel
tasks on anodeincreases, the copy of Total View or the TotalView Debugger
Server running on that node becomes saturated, and cannot keep up with the
SIGALRMs being sent, thus slowing down the tasks.

TotalView User's Guide 113



CHAPTER5: Setting Up Parallel Debugging Sessions

114 TotaView User's Guide



CHAPTER 6:
Debugging Programs

This chapter explains how to perform basic debugging tasks with Total View.
You'll learn how to:

» Find code as you debug

» Display your code in source and assembler formats

» Invoke your editor on source files you are debugging

* Return to the currently executing line in the stack frame

» Interpret status and control registers

» Use commands for controlling processes and threads

» Control process groups in multiprocess programs

» Usesingle-step commands

» Debug with signal handlers

» Set the program counter

TotalView User's Guide 115



CHAPTER 6: Debugging Programs

Finding the Source Code for Functions

If you linked a function to your program at compile time, you can then use
TotalView to search for the source code for that function. Y ou can:

» Diveinto the function name from the source code pane.

* OntheFunction/File/Variable submenu, select the Function or File (f)
command. When prompted, type the function name in the dialog shown in
Figure 41.

Function to view, or filename to opend

Figure4l. Function Name Dialog

Tip:  Whenyouwanttoreturntotheoriginal contentsof the source
codepane, diveinto theundiveicon located inthe upper right
corner of the source pane.

If TotalView finds the source code, it displaysit in the source code pane. If the
function you selected was not compiled with source lineinformation, TotalView
displays the disassembled machine code for the function instead of displaying the
source code.

Tip: Y ou can use the Edit Source Text command (see “ Editing
Source Text” on page 122 for details) or an X Window
System client such as xmore, vi, or emacs to display these
files while debugging.

116 TotaView User's Guide



Resolving
Ambiguous
Names

Finding the Source Code for Functions

Sometimes the function name you specify is ambiguous. For example, you may
have specified the name of a static function when your program contains multiple
staticfunctionsby that samename. Alternatively, you may have specified thename
of amember function in a C++ program where there are multiple classes with
member functionsof that name. Or, you may have specified the name of atemplate
function. In al of these cases, TotalView prompts you to resolve the ambiguity.
Figure 42 shows an example of the dialog that TotalView displays when it
encounters an ambiguous function name.

he function name you have specified iz ambiguous,
leaze select one of the following,
r type in an unambiguous specification below,

3 minfdouble,doubled
fremplate,cxx:h

O mindint, int}
fremplate,cxx:d

Function specification?

Figure42. Diaog for Resolving Ambiguous Function Names

To resolvetheambiguity, click one of theradio buttons or thetext following it and
then click OK. Alternately, you may type an unambiguous name in the Function
Specification field.

Whenever you select afunction name, its specification automatically appearsin
the Function specification field allowing you to create a new function
specification by editing the existing one. When there are many screens of function
namesinthedialog, thisfeatureletsyou specify anameyou want; you do not have
to scroll to find a specific name.

TotalView User's Guide 117



CHAPTER 6: Debugging Programs

Once the TotalView context is set to a particular instantiation of the function
template, then Total View usesthat instantiation and no longer displaysadialogto
disambiguate names. TotalView can prompt you to set the specific context when
you:

»  Specify afunction name with the Function or File (f) command

« Diveonanamein the source pane

e Halt execution at alinein the function

» Select afunction by clicking on itslinein the stack trace pane

* Previoudly selected alinein the function and that lineis still selected

118 TotaView User's Guide



Finding the Source Code for Files

Finding the Source Codefor Files

Y ou can display the source code for agiven file in your program by choosing the
Function/File/Variablesubmenuand selecting theFunction or File(f) command.
When prompted, enter the file name in the dialog box shown in Figure 41. You
may enter the name of a header fileif the header file contains source lines that
produce executable code.

Source File TotalView maps filename extensions to source languages as shown in Table 9.
Extensions

Table9. Source Language Mapping

File Extension Sour ce Language

.CXX, .CC, .cpp, .C, .hxx, H C++

.F, .f, .F90, .fo0 FORTRAN 77 or Fortran 90
.hpf, .HPF HPF
All others C

TotalView uses one of the following methods to identify a program as
FORTRAN 77 or Fortran 90:

» The compiler explicitly specifies the language in the debug information.

» Thesourcefilenamehasan .f90 or .F90 suffix; TotalView treatsthe program
language as Fortran 90.

» The code uses Fortran 90 features such as assumed shape arrays or pointers.
If Total View determinesthat afile containsFortran90 using thismethod, then
itis possible that functions or subroutines defined earlier in the same source
filewill appear to bewrittenin Fortran77. Thisshould not beaproblem, since
such functions cannot be using Fortran90 features.

TotalView User's Guide 119



CHAPTER 6: Debugging Programs

Examining Sour ce and Assembler Code

In the source code pane of the process window, you can display your program in
several differentways, asshownin Table 10. If youdisplay Assembler inthesource
code pane, you can aso display addresses in two different ways, as shown at the
bottom of Table 10.

Table10. Waysto Display Source and Assembler Code

Select Thisfrom the

ToDisplay Thisin the Display/Dir ectory/Edit
Sour ce Code Pane... Submenu...

Source code only (Default) Source Display Mode (M eta-s)

Assembler code only Assembler Display Mode

(Meta-a)

Source code interleaved with Interleave Display Mode (M eta-i)
Assembler code!

Symbolic addresses (function  Display Assembler Symbolically
names and offsets) for all
locations and references’

Absolute addresses for all Display Assembler by Address
locations and references
(Default)?

1. Source statements are treated like comments. Y ou can set
breakpoints or evaluation points only at the machine level, not at the
sourcelevel. Setting an action point at thefirst instruction after asource
statement, however, is equivalent to setting a point at that source
Statement.

2. If an address matches the address of afunction, TotalView displays
the function name.

Figure 43 illustrates the effect of displaying Assembler code in different waysin
the source code pane. Y ou can also display Assembler instructionsin avariable
window. For more information, see “ Displaying Machine Instructions’ on

page 151.

120 TotaView User's Guide



Examining Source and Assembler Code

Function ,main in expr.c
0100002032 0x38c70000  addi rE.r7,0
0xL00002ccy 0x48000c71 bl Lprintf
010000202 0x80410014 1wz rtoc,20(sp)
0x100002d4 0x8062002c 1wz r3,dd{rtoc}
010000232 0x30630020  addic r3,r3,32
0x100002dcy 0x48000c85 bl LFflush
0100002203 0280410014 1wz rtoc,20{sp}
Assembler Only 010000224 0xB0BL00ZE  luz r3,56{sp)
0100002232 0x480001ed bl Jfrectres
(absol ute addrms) Ox100002zc; 0xE0000000  nop
O100002F 03 0x4800026d bl Jreadexpr
0xL00002F 42 050000000 nop
G . d d ed . d 0xL00002F 32 0x30610038  stu r3,86{zp)
0xL00002F c3 0xB0B10038 1wz r3,56{zp}
n ga ( Ott grl ) 0100003003 0x28030000  copluwi r3.0
i | 1 i — 0100003043 0x4082fF8d  bre+ 010000238
| ndl CaIes a:tl on pOI nt 0x100003032 0x38600000 11 r3J0
H H 0xL000030c; 048000004 b 00000310
can be set on instruction 000003103 0xB0010068  luz roio4se:
0x100003142 0x7c0B0326 mtlr ri
0xll2000318: 030210060 addic =plsp.96
Location by absolute address References by absolute address
Function ,main in expr,c
wmain+OxEds 0x38c70000  addi rE,r7.0
wmaintixBoy 0x48000c71 bl Lprintf
Jmain+0xg0: 0280410014 luz rtoc, 20{spy
omaintix94: 0xB0B2002c  lwz r3,44{rtocy
Jmain+Oxad: 0x30630020  addic r3,r3,32
wmaintix9cy 0x48000c85 bl LFflush
Jmain+ixat: (080410014 luz rtoc, 20{spy
Jmaintixad: 0xB0B10038  luz r3,56(sp}
AMbler Only wmain+Oxady Ox480001ed bl Jfrectres
H Jmaintlxacy 0xB0000000  nop
(symbolic addresses) main+Oxbo: 0x4800025d bl .readexpr
wmaintixbd: 0xB0000000  nop
Jmain+0xbE: (30610038 stu r3,86(sp}
wmaintixboy 0xB0BL0038 1wz r3,56(sp}
Jmain+ixci: (28030000 cnplui r3,0
omaintixcd: 0x4082FFB4  bre+ Lmaint0xdd
Jmain+Oxeds 0x38600000 11 r3jo
wmaintixcocy 048000004 b LmgintOxd)
JMmain+0xdi: (xB00100BE 1wz rOj104¢sp3
Jmaintixdd (x7c0B03a6  mtlr i
i omain+Oxdd: (030210080 addic splsp.96 'y
| |
Location by function and offset ~ References by function and offset
Function ,main in expr,c
H 0x100002d0; 0xB0410014  luz rtoc, 20(sp)
4| B Fflush (stdout):
H 0x100002d4; 0xBOB2002c  luz r3,d4d{rtocy
i 0x100002d3: 0x30630020  addic r3,r3,32
| ntal eavaj S (0x100002dc 0x48000c85 b1 JFFlush
H 0100002207 0xB0410014  luz rtoc, 20(sp)
SOUI’CG/ASSEH]UEI’ 5| B freetres (hodel:
S (010000224 : 0x80610038  luz r3,56¢sp}
(abSO| ute addl’esses) 0x10000268; x430001ed bl Jfrestres
(0x100002ec: (xB0000000  nop
0x100002F0; 0x4800026d bl Lreadexpr
0x100002f 4: 0xE0000000  rop
(x100002F 83 0x30610038  stw +3,56(=p}
0x100002f ¢; 0xBOBL0038  luz r3,56(sp)
0x100002003 0x28030000  cnplui r3.0
0x10000304; 0x4082FF84  bne+ 0x10000283
26
37 E turn (0):
H Ox10000303; 0x38600000 11 r3j0
i Ox10p00Z0:: 0x48000004 b 0 000010
Source line B| B Auainw i
L ocation by absolute address References by absolute address

Figure43. Different Waysto Display Assembler Code

TotalView User's Guide 121



CHAPTER 6: Debugging Programs

Current Stack Frame

Y ou canreturn to theexecuting line of codefor the current stack frame by sel ecting
the Current Stackframe (c) command from the Current/Update/Relatives
submenu in the process window. This command forces the PC arrow onto the
screen and discards the dive stack.

TheCurrent Stackframe(c) commandisalsouseful if youwant to undothe effect
of scrolling or finding afunction or fileusing the Function or File... (f) command.
For details, see “Finding the Source Code for Functions’ on page 116.

If the program has not begun to run, the Current Stackframe (c) command puts
youinthefirst executablelineof codeinyour main program function or subroutine.

Editing Source Text

Y ou canusethe Edit Sour ce Text (M-€) command ontheDisplay/Directory/Edit
submenu to edit sourcefileswhileyou are debugging. Total View startsyour editor
on the source file being displayed in the source pane of the process window.

TotalView uses the editor launch string to determine how to start your editor. To
change the value of the editor launch string, see “ Changing the Editor Launch
String” on page 122.

Changing the Editor Launch String

Y ou can changethe editor launch string to control theway the debugger startsyour
editor when you use the Edit Source Text command.

Theeditor launch string is processed by Total View and expanded into acommand

string, that is then executed by the shell sh. This allows you to configure exactly
how the editor is started.

122 TotaView User's Guide



Changing the Editor Launch String

Total View recognizescertainitemsinthelaunch string, which areexpanded before
the debugger starts your editor. The items that are expanded are as follows:

%E Expands to the value of the EDITOR environment
variable, or tovi if EDITOR if not set.

%N Expandsto the line number in the middle of the source
pane. Use this option if your editor allows you to
specify aninitial line number at which to position the

Cursor.
%S Expandsto the sourcefile namedisplayedinthe source
pane.
%F Expands to the font name with which you started
TotalView.

The default editor launch string is:

xterm-e % +9%N %S

which creates an xterm window inwhich to run the editor. If you use an editor that
creates its own X window, such as emacs or xedit, you do not need to create the
xterm window, and you should change the editor launch string.

Y ou can change the editor launch string by using one of the following methods:

e Using an X resource.

Refer to “totalview* editorLaunchString: command_string” on page 268 for
more information.

» UsingtheEditor Launch String... command ontheDisplay/Director y/Edit
submenu of the process window.

TotalView User's Guide 123



CHAPTER 6: Debugging Programs

Inter preting Status and Control Registers

The stack frame panein the process window liststhe contents of CPU registersfor
the selected frame (you may need to scroll down to see them). To learn about the
meaning of these registers, you need to consult the user’ sguide for your CPU and
Appendix C, “Architectures,” on page 333.

For your convenience, TotaView interprets the bit settings of certain CPU
registers, such as the registers that control the rounding and exception enable
modes. Y ou can edit the values of these registers and continue execution of your
program. For example, you might do thisto examinethe behavior of your program
with a different rounding mode.

Since the registers that are interpreted vary from platform to platform, see
Appendix C, “Architectures,” on page 333 for information on the registers
supported for your CPU. For general information on editing the value of variables
(including registers), refer to “Displaying Areas of Memory” on page 150.

Starting Processes and Threads

To start a process, go to the process window and select one of the following
commands from the Go/Halt/Step/Next/Hold submenu.

Go Process (Q) Creates and starts this process. Resumes
execution if the processis not being held,
already existsand is stopped or at a
breakpoint. Starting a process causes all
threads in the process to resume execution.

Go Group (G) Creates and starts this process and all other
processes in the multiprocess program
(program group). Resumes execution and the
execution of all processes in the program
group if the processisnot being held, already
existsand is stopped or at a breakpoint.

124 TotaView User's Guide



Creating a
Process without
Starting it

Creating a
Process by
Single-Stepping

Starting Processes and Threads

Note that issuing Go Group on a process
that’ s aready running starts the other
members of the program group.

GoThread (*"G) Starts this thread. Disabled if asynchronous
thread control is not available (see “ Thread-
Level Control” on page 135).

For a single-process program, Go Process and Go Group are equivalent. For a
single-threaded process, Go Thread and Go Process are equivalent.

Commands that contain the term Group (for example, Go Group) refer to all
members of the program group. Theterm relatives generally refersto the program
group as well.

Note:  If aprocessisbeingheld by TotalView, theabove commands
will not start the process or thread. See “Holding and
Releasing Processes’ on page 128.

The Create Process (without starting it) (C) command creates a process and
stopsit beforeit executes any of your program. For programsthat are linked with
shared libraries, TotalView allows the dynamic loader to map in shared libraries.

Creating a process without starting it is useful:
» If youwant to display or change global variables after a processis created,

but before it runs

« If you want to debug your C++ static constructor code

The Total View single-stepping commands allow you to create a process and run
it to acertain point in your programs. The process window single-stepping
commands in the Go/Halt/Step/Next/Hold submenu behave as follows when
creating a process:

Step (sourceline) (s) Createsthe processand runsit to thefirst line
of the main() routine.

Next (sourceline) (n) Same as Step (sourceline) (s).

TotalView User's Guide 125



CHAPTER 6: Debugging Programs

Step (instruction) (i)

Next (instruction) (x)

Run (to selection) (r)

126 TotaView User's Guide

Creates the process and instruction steps the
first instruction of your program.

Creates the process and instruction nexts the
first instruction of your program.

Creates the process and runs it to the line or
instruction you have selected in the process
window.



Stopping Processes and Threads

Stopping Processes and Threads

To stop a process or athread, go to the process window and select one of the
following commands from the Go/Halt/Step/Next/Hold submenu:

Halt Process (h) Stops the process.
Halt Group (H) Stops the process and all related processes.

Note that issuing Halt Group (H) on a
processthat’ salready stopped stopsthe other
members of the program group.

Halt Thread ("H) Stops the thread. Disabled if asynchronous
thread control is not available (see “ Thread-
Level Control” on page 135).

When the Total View debugger stopsaprocess, it updatesthe processwindow and
all related windows. When you start the process again, execution continues from
the point where you stopped the process.

Note:  You can force the process window to update the process
information using the Update Process | nfo (u) command
from the Current/Update/Relatives submenu without
stopping theprocess. Total View will flushitsinternal process
data cache and temporarily stop the process and reread the
thread registers and memory. This alows you to quickly
refresh your view of a process.

TotalView User's Guide 127



CHAPTER 6: Debugging Programs

Holding and Releasing Processes

TotalView alowsyou to hold and release processes. When aprocessis held, any
command that would otherwise cause the process to run, such as Go Process (g)
or Go Group (G), has no effect.

Manual hold and release are useful in a number of cases:

» If youwishto run asubset of the processes, you can manually hold all but
the ones you want to run

* If aprocessisheld at aprocess barrier point and you want to run it without
firstrunning all the other processesinthegroup tothat barrier, you canrelease
it manually and then run it

A process may also be held if it stops at a process barrier breakpoint. Y ou can
manually release aprocesswhichisbeing held at aprocess barrier breakpoint. See
“Process Barrier Breakpoints’ on page 201 for more information on how process
barrier breakpoints interact with holding and releasing processes manually.

When aprocessisbeing held, the root window and process window display aheld
indicator. See Figure 80 on page 203.

To hold or release a process or group of processes:
* You can toggle the hold/release state of a process by choosing the

Hold/Release Process (w) command from the Go/Halt/Stop/Next/Hold
submenu in the process window.

Note:  If aprocessisrunning when you issue the Hold/Release
Process(w) command, Total View first stopsthe processthen
holdsit.

* You can hold an entire group by choosing Hold Group command from the
Go/Halt/Step/Next/Hold submenu in the process window.

* You can then release the group by choosing Release Group command from
the Go/Halt/Step/Next/Hold submenu in the process window.

128 TotaView User's Guide



Examining Process Groups

Typesof Process
Groups

Examining Process Groups

When you debug multiprocess programs, TotalView places processes in process
groups for convenience. TotalView's process groups are not related to UNIX
process groups or PVM groupsin any way.

When you start a multiprocess program, the debugger adds each processto a
process group as the process starts. The debugger groups the processes depending
onthetypeof systemcall (for k() or execve()) that created or changed the processes.
There are two different types of process groups:

Program Group  Includesthe parent process and all related processes.
A program group includes children that were forked
(processes that share the same source code as the
parent) and children that were forked but with a
subsequent call to execve() (processesthat do not share
the same source code as the parent).

Share Group Includesonly therelated processesthat share the same
source code.

In general, if you are debugging a multiprocess program, the program group and
share group differ only if the program has some children that are forked with a
subsequent call to execve().

The debugger names the processesin program groups and share groups according
to the name of the source program. The parent processis named after the source
program. Child processes that were forked have the same name as the parent, but
with anumerical suffix (.n). Child processes that call execve() after they were
forked havethe parent’ sname, the name of the new executabl e (in angle brackets),
and anumerical suffix.

For example, if the gener ate processforksno children, and thefilter processforks

a child process that makes a subsequent call to execve() to execute the expr
program, the debugger names and groups the processes as shown in Figure 44.

TotalView User's Guide 129



CHAPTER 6: Debugging Programs

Process Groups
Program Share Group 1
Group 1

ProcessNames  Relationship

filter
filter.1

parent process #1
child process #1

Share Group 2 —[_ filter<expr>.1.1 grandchild process#1

Program —{ ShareGroup3 —— generate

Group 2

parent process #2

Figure44. Example of Program Groups and Share Groups

Di Sp| ayi ng The root window displays the names of individual processesin multiprocess
Process Groups programs, but not in the process groups. To display alist of process groups, select
P the Show All Process Groups command from the root window. The process

groups window appears, as shown in Figure 45.

Name of executable ——F—|5 [RCEES ATRURS, I
b

B List of ALl Process Groups TESSp s
i
filteriSharebroup (&
filteriProgramGroup (#53
filter<expr>,1,1:5hareCroup (#14
generatelSharebroup (#2030
generateProgranGroup (#213)
=]

Type of process group —

Figure45. Process Groups Window

Group number
Dive into process group
todisplay single process
group window

If you dive into any process group listed in the window, a single process group
window appears, as shown in Figure 46. By diving into any process listed in the
window, you display the process window for the process. (Y ou can also diveinto
the process listed in the root window to display its process window.)

130 TotaView User's Guide



Examining Process Groups

EESTE Croup "filteriProgramGroup” (#0) ST
Diveinto processto 2 processes in group, £
display process window— 3702 T filter (41}

20607 T filter,1 (#12)
Process|ID 7292 R Filter<expry.1.1 (#14)
State
Process name
]

Figure46. Single Process Group Window

Chan gi ng In most situations, TotalView places a process in the correct program group, so
Pr ogram you do not normally need to change the program group of a process.
Groups If necessary, however, you can move processes into different program groups.

Whenyou moveaprocessinto adifferent program group, Total View automatically
placesit in the correct share group. The advantage of moving a processinto a
different program group is that members of the same program group can start and
stop on a breakpoint at the same time. (See “Group-Level Single-Stepping” on
page 134 for detail sthat apply to multiprocess programs.) Furthermore, members
of the same share group share the same set of action points.

Note:  TotaView usesthe name of the executable to determine the
share group to which the program belongs. TotalView does
not examine the program in any way to seeif it isidentical
to another program with the same name; Total View assumes
the programs are identical because their names areidentical.
Also, Total View doesnot expand aprogram’ sfull pathname,
so if oneinstance of a program is named with the full
pathname (./foo), and another is named with the leaf name
(foo), the programs are placed in different share groups.

To move a process into a different program group:

1. Fromtheroot window, select Show All Process Groups. The processgroups
window appears.

2. Make note of the group ID number for the programgroup into which you're
moving the process. This number is displayed in parentheses.

TotalView User's Guide 131



CHAPTER 6: Debugging Programs

3. From the process window for the process to be moved, display the
Arguments/Create/Signal submenu, and select Set Process Program
Group. A dialog box appears, as shown in Figure 47.

Figure47. Dialogfor Changing Process Groups

4. Enter the group ID number into the dialog box and press Return.

Findi ng Active  Although awell-balanced multiprocess program distributes work evenly among

Pr ocesses processes, this situation does not always occur in practice. In some multiprocess
programs, most of the active processes may be waiting for work. In this situation,
it's tedious to look through the entire group to find the processes that are doing
work. Instead, you can use the Find I nter esting Relative command to find them
quickly.

When you display the Current/Update/Relatives submenu and select the Find
I nter esting Relative command from the process window:

» A process group window appears, listing the processes in decreasing order
of interest.

» A processwindow appearsfor the most interesting processin the group (if it
does not already have a process window open).

To see additional process windows for processes in decreasing order of interest,
select the Find Interesting Relative command again, or dive into the processes
listed in the process group window.

TotalView uses the following criteria to determine the order of interest:

* Running processes are more interesting than stopped processes.

* Processeswith threads at breakpoints are moreinteresting than those that are
stopped at arbitrary locations.

132 TotaView User's Guide



Setting a Breakpoint

Processes with threads with deep (larger) stacks are more interesting than
processes with shallow (smaller) stacks.

Processeswith threads with unusual PCs are moreinteresting than processes
with threads with identical PCs. (The debugger examines all the threads and
produces a histogram of their PCsto determine this.)

Setting a Breakpoint

Y ou can set breakpoints in your program by selecting the boxed line numbersin

the source code pane of aprocesswindow. A boxed line number indicates that the
line generates executable code. A STOP icon masking aline number indicatesthat
thereisabreakpoint set ontheline. Selecting the STOP icon clearsthe breakpoint.

When a program reaches a breakpoint it stops. Y ou can let the program resume
execution in any of the following ways:

Use single-step commands described in “ Single-Stepping” on page 133.

Useasignal handler if your program contains oneto continue with aspecific
signal. See “Continuing with a Specific Signal” on page 142.

Use the set program counter command to resume execution at a specific
sourceline, machineinstruction, or absolute hexadecimal value. See* Setting
the Program Counter” on page 143.

Set breakpointsat linesyou choose and allow your program to executeto that
breakpoint. See “ Setting Breakpoints’ on page 190.

Set conditional breakpoints that cause a program to stop after it evaluates a
condition that you define, for example“ stop when avalueislessthan 8.” See
“Defining Evauation Points’ on page 205.

TotalView provides additional features for working with breakpoints, process
barrier breakpoints, and evaluation points. For more information, refer to Chapter
8, “ Setting Action Points,” on page 187.

Single-Stepping

TotalView User's Guide 133



CHAPTER 6: Debugging Programs

Process-L evel
Single-Stepping

Group-Level
Single-Stepping

TotalView supports single stepping commands that allow you to do any of the
following:

» Execute one source line or machine instruction at atime

» Step over or into function calls

* Runto aselected line, which acts like atemporary breakpoint
* Rununtil afunction call returns

Single-step commands are on the Go/Halt/Step/Next/Hold submenu of the

process window, and operate at one of three levels: process-level, group-level or
thread-level. Thevariouslevelsaffect whichthreadswithin aprocessand processes
within agroup areallowed to run whilethe single-stepping command is executing.

Inall cases, the single-step commands operate on the primary thread, which isthe
thread that is selected in the current process window.

The process-level single-step commands step the primary thread and allow other
threadsin the process to run. Threads that reach the stopping point in advance of
the primary thread resume execution. The primary thread must reach the stopping
point before execution stops.

Some operating systems only implement a synchronous run model; when one
thread in the process runsfor any reason, all threads must run. To step athread on
these systems, you must use the full-process, single step commands. These
platformsinclude: LynxOS, IRIX, and SunOS operating systems.

Thegroup-level single-step commands operate onaTotal View processgroup (the
program and share groups described on page 129). When you issue the command,
TotalView identifies the processes and threads that are similar to the primary
process and thread. These processesform astep group; Total View stepsthisgroup
and stopsonly when all itsmembers cometo the command stopping point. Similar
processes are in the same share group (they execute the same code) and have at
least onethread with aPC that matchesthe PC of the primary thread. When several
threadsin aprocessaresimilar tothe primary thread, TotalView arbitrarily assigns
one thread to the step group.

134 TotaView User's Guide



Thread-L evel
Single-Stepping

Thread-L evel
Control

Single-Stepping

Membership in the step group can change while a group single-step command
executes. A thread can leave the step group if its PC diverges from that of the
primary thread, for exampleif it executes a conditional branch that moves away
from the primary thread. A process and thread that are not included in the step
group at command onset, can synchronize execution with the primary process.
TotalView then includes these cases in the step group.

The Run (to selection) Group (R) command does not work like the other group
single-step commands. It stops when the primary thread and at |east one thread
from each process in the share group reach the command stopping point. This
allowsyou to usethe command to synchronizeagroup of processesand bring them
to one location.

The thread-level single-step commands step the primary thread to the command
stopping point, while holding other user threads in the process stopped.

Note:  When it can identify manager threads, TotalView runsthem
asit steps the single thread. Otherwise, TotalView runs the
primary thread by itself.

Beware that the thread-level single step operations can fail to completeif the

primary thread depends on the input or output of athread that is not running. For
example, if the primary thread requires alock that another thread holds, and step
over acall that triesto acquire the lock, then the primary thread cannot continue
successfully. The other thread hasto be allowed to run in order to release the lock.

Only some operating systemsallow asinglethread to start and stop independently
of othersin the same process (this is known as asynchronous thread control).
TotalView single-thread commands are operable only on the Sun4 OS, Sun5 OS,
AlphaDigital UNIX, and IBM AlX operating systems.

TotalView User's Guide 135



CHAPTER 6: Debugging Programs

Saecti ng Source Severd of the single-stepping commands require you to select aline or machine

Lines instructioninthe source paneof the processwindow. To select asourceline, simply
position the cursor over the desired line and select it. To deselect a source line,
select it again.

Note:  See“Displaying Thread and ProcessL ocations’ on page 140
for adescription of the side effect selecting aline or machine
instruction has on the root window display.

If you select a source line that has more than one instantiation (for example, in a
C++ function template or code in aheader file), TotalView prompts you to select
a specific instantiation as shown in Figure 48.

he source line you have specified iz anbiguous,
leaze select one of the following containing functions,
r type in an unanbiguous specification below,

) min{double,double}
O mindint, int}

Function specification:

Figure48. Diaog for Resolving Ambiguous Source Lines
To usethis dialog box:

1. Select the function instantiation you want, or type in the function
specification.

2. Select the OK button.
3. Usethe Abort button to abort setting the source line selection.

136 TotaView User's Guide



Single-Step Commands

Stepping Into
Functions Calls

Single-Step Commands

To execute a single-step command first select athread, and then select asingle-
step command fromthe Go/Halt/Step/Next/H old submenuin the processwindow.

The following applies to all single step command:

» Tocancel any single-step command in progress, position the mouse pointer
in the process window and press CTRL-C.

» If your program reaches a breakpoint while stepping over a function,
TotalView cancels the operation and your program stops at the breakpoint.

» If youissue asource line step command and the primary thread is executing
in afunction that has no source line information, TotalView performs the
corresponding instruction step instead.

To execute asingle source line or instruction, and possibly step into a function
call, select one of the following commands:

Step (sourceline) (s)

Step (sourceline) Group (S)

Step (sourceline) Thread (M-"s)

Step (instruction) (i)

Step (instruction) Group (1)

Step (instruction) Thread (M-"i)

Executes a single source line at the process-
level, stepping into functions, if any.

Executes a single source line at the group-
level, stepping into functions, if any.

Executes a single source line at the thread-
level, stepping into functions, if any.

Executes a single machine instruction at the
process-level, stepping into functions, if any.

Executes a single machine instruction at the
group-level, stepping into functions, if any.

Executes a single machine instruction at the
thread-level, stepping into functions, if any.

Using these commands, if you single-step a source line that contains a function
call, you automatically step into the function, if thereis source line information
availablefor it. If desired, you can single-step over afunction call asdescribed in

the next section.

TotalView User's Guide 137



CHAPTER 6: Debugging Programs

Stepping Over
Function Calls

Executingtoa
Selected Line

Whenyou step over afunction, Total View stopsexecution whenthe primary thread
returnsfromthefunction and reachesthesourcelineor instruction after thefunction
call. To step over afunction call select one of the following commands:

Next (sourceline) (n) Executes a single source line at the process-
level, stepping over functions, if any.

Next (sourceline) Group (N) Executes a single source line at the group-
level, stepping over functions, if any.

Next (sourceline) Thread (M-"n) Executes a single source line at the thread-
level, stepping over functions, if any.

Next (instruction) (x) Executes a single machine instruction at the
process-level, stepping over functions, if any.

Next (instruction) Group (X) Executes a single machine instruction at the
group-level, stepping over functions, if any.

Next (instruction) Thread (M-"x)
Executes a single machine instruction at the
thread-level, stepping over functions, if any.

Y ou don’t haveto set abreakpoint to stop execution on aspecific line. Total View
providesaconvenient way for youto runyour programto asel ected lineor machine
instruction. To do so, complete these steps from the process window:

1. Inthe source code pane, select the source line or instruction on which you
want the program to stop execution.

2. Select one of the following commands:

Run (to selection) (r) Runs the process until the primary thread
reaches the selected line.

Run (to selection) Group (R) Runsthe primary thread and all the processes
in the share group until it and at least one
thread from each process in the share group
reach the selected line. Allows you to
synchronize a group of processes and bring
them to one location.

Run (to selection) Thread (M-"r) Runsthe primary thread until it reaches the
selected line.

138 TotaView User's Guide



Executingtothe
Completion of a
Function

Single-Step Commands

You can aso run to aselected line in anested stack frame. To do so:

1. Select anested framein the stack trace pane.
2. Select asource line or instruction within the function.
3. IssueaRun (to selection) command.

TotalView executes the primary thread until it reaches the selected linein the
selected stack frame.

If your program calls recursive functions, you can select a nested stack framein
the stack trace paneto tailor execution even more. Inthissituation, Total View uses
the frame pointer (FP) of the selected stack frame and the selected source line or
instruction to determine when to stop execution. When your program reaches the
selected line during execution, TotalView compares the value of the selected FP
to the value of the current FP in the following way:

» If the value of the current FP is deeper (more deeply nested) than the value
of the selected FP, TotalView automatically continues your program.

» If thevalue of the current FP is equal or shallower (less deeply nested) than
the value of the selected FP, TotalView stops your program.

Y ou can single-step your program out of afunction call. To finish executing the
current function in athread, select one of the following commands:

Return (out of function) (o) Runs the process until the primary thread
returns from the current function.

Return (out of function) Group (O)
Runsthe primary thread and all the processes
in the share group until the primary thread
returns from the current function.

Return (out of function) Thread (M-"r)
Runs the primary thread until it returns from
the current function.

When the command compl etes, the primary thread is|eft stopped at theinstruction
after the one that called the function.

TotalView User's Guide 139



CHAPTER 6: Debugging Programs

Y ou can aso return out of severa functions at once. To do so:

1. Select anested stack frame in the stack trace pane.
2. IssueaReturn (out of function) command.

Total View executesthe primary thread until it returnsto thefunctioninthe selected
frame.

If your program calls recursive functions or mutually recursive functions, you can
select a nested stack frame in the stack trace pane to tailor completion of the
function even more. Inthissituation, Total View usesthe frame pointer (FP) of the
selected stack frame and the selected source line or instruction to determine when
to stop execution. When your program reaches the selected line, TotalView
compares the value of the selected FP with the value of the current FP in the
following way:

» If the value of the current FP is deeper (more deeply nested) than the value
of the selected FP, TotalView automatically continues your program.

» If thevalue of the current FP is equal or shallower (less deeply nested) than
thevalue of the selected FP, Total View stopsyour program. If your program
reaches a breakpoint while executing to a selected line, TotalView cancels
the operation and your program stops at the breakpoint.

Displaying Thread and Process L ocations

Y ou can see which processes and threads in the share group are at a particular
location by selecting asource line or machine instruction in the source pane of the
process window. TotalView dims thread and process information in the root
window if the thread or processis not at the selected line. A processis considered
at the selected lineif any of the threads in the process are at that line. Selecting a
line in the process window that is already selected, will remove the dimming in
the root window.

The root window reflects the line that you selected most recently. If you have
several process windows open, the display in the root window will change
depending on the line you selected last in a process window.The display can also
change after an operation that changes the process state, or when you issue an
Update Process I nfo (u) command.

140 TotaView User's Guide



|W Process 430241 mpirundcpi>.0 {Stopped)

Displaying Thread and Process L ocations

N Thread 430241 wpiruncepi>.0 (Stopped? <Trace Trap> NN i‘{;@} 2
[ ITRRRROREN Stack Trace HNMIMINNI{SEE S S8 IRIHS HIPS TotalView 3.8.1 PSS S S8
[ C | main, FF i 42990 R mpirun {in __select} ii
__start, FP=FFffff4 [ H : B
] 41409 2 mpirun<cpi>‘1 {in maind
] 42887 12 mpirun<cpi>.2 {in main}
] 43030 12 mpirun<cpi>.3 {in main}

| | Root window showing
2 dimmed process lines

AT Function main in mpicpi.c IR

26 char proceszor_name[MPI_MAX_PROCESSOR_NAME]:

WPI_Init{&arge,bargul:
MPI_Comm_sizetMPI_COMHM_WORLD, &numprocs)
MPI_Comm_rank {MPI_COMH_WORLD , &myid?
MPI_Get_processor_namedprocessor_name,&namelen? s

myid, processof_name:

o

if {n==0) n=100: else

i Thread (1) sl

- |W Process 43024: mpirundcpi>,0 (Stopped) Sty [LA)PY)
while ¢ldone) I"""""""""""""IThread 43024,13 mpirundcpi>,0 {Stopped} <Trace Trap» HHHH“““““'““““““| %iﬁ}
i iF tmaid == 03 [ARONY Stack Trace IS S8 88 RIS HIPS TotalView 3.§.1 PSS S S8
i myid == =E ) nain, a [ 42990 B mpirun {in __select) =y
__sztart., FP:FFFFFFa [ 43024 T mpirundcpiz, 0 {in main}
printf{"Enter fhe nunt b 4a - > mma
scanfi"¥d" &nd g

<l

N Function main in mpicpi.c IR

27

MPI_Initi&argc,bargul:

HPI_Comm_rank {HPI_COMM_WORLD , &myid? :

fprintfistderr, "Process #d on shn",
myid, processor_name}:

while ¢ldone?
i

if imyid == 03
i

scanf("¥d" &nd s

. if {n==03 n=100: else n=0:
Selected line of source

26 char proceszor_name[MPI_MAX_PROCESSOR_NAME]: <r

MPI_Comm_zize{MPI_COMM_WORLD, &numprocsd ¢

MPI_Get_processor_namedprocessor_name,&namelen? s

printf{"Enter the number of fintervals: {0 quits) ")z

|

Action Points &

in main

Ijm 2 line 33 in main+Ox7c
A

=

Figure49. Dimmed Process Information in the Root Window

TotalView User's Guide 141



CHAPTER 6: Debugging Programs

Figure 49 shows root windows with dimmed process information and the
corresponding processwindowsthat createthisoutput. Inthisexample, theparallel
program was run to a barrier breakpoint, and one process (mpirun<cpi>.0) was
single-stepped to the next source line. In the top, half of the figure, the line of
source at the barrier breakpoint in the process window was selected. The root
window shows the processes at that line not dimmed, and one process not at that
line dimmed. In the bottom half of the figure, the line at which the one processis
stopped was sel ected. The one process (mpir un<cpi>.0) was not dimmed, but the
otherswere dimmed. Finally, sincethe MPI starter process (mpirun) isnot in the
samesharegroup astheprocessesrunning thecpi program, the processinformation
is subject to dimming.

Continuing with a Specific Signal

Continuing execution of your program with a specific signal can be useful if your
program containsasignal handler. To do so, complete these stepsfrom the process
window:

1. Display the Go/Halt/Step/Next/Hold submenu and select the Set
Continuation Signal command.

2. Inthedialog box, enter the name (such as SIGINT) or number (such as 2) of
the signal to be sent to the thread.

3. Select OK.

Note:  The continuation signal is set for the thread you are focused
on in the process window. If the target operating system
supports the multithreaded signal delivery capability, you
may set a separate continuation signal for each thread. If this
capability isnot supported, then thiscommand will clear any
continuation signal you specified for other threadsin the
process.

4. Continue execution of your program with the Go, Step, Next, or Detach
from Process command.

TotalView continues the thread(s) with the specified signal(s).

142 TotaView User's Guide



Setting the Program Counter

Setting the Program Counter

Y ou might find it useful to resume the execution of athread at some statement
other than the one where it stopped. To do this, you reset the value of the program
counter (PC). For example, you might want to skip over some code, execute some
code again after changing certain variables, or restart athread that isin an error
State.

Setting the program counter can be crucial when you want to restart athread that
isin an error state. Although the PC icon in the tag field points to the source
statement that caused the error, the PC actually points to the failed machine
instruction within the source statement. Y ou need to explicitly reset the PC to the
beginning of the source statement. (Y ou can verify the actual location of the PC
before and after resetting it by displaying it in the stack frame pane or displaying
interleaved source and Assembler code in the source code pane.)

In Total View, you can set the PC of a stopped thread to a selected sourceline, a
selected instruction, or an absolute value (in hexadecimal). When you set the PC
to aselected line, the PC pointsto thememory | ocation where the statement begins.
For most situations, setting the PC to a selected line of source codeis sufficient.

To set the PC to aselected line:

1. If youneedto set the PC to alocation somewherewithin aline of sourcecode,
display the Assembler code. To do so, display the Display/Dir ector y/Edit
submenu and select the Interleave Display M ode (M-i) command.

2. Select the source line or instruction in the source code pane. TotalView
highlights the line in reverse video.

If you select aline in a C++ function template that has more than one
instantiation, you will be prompted to select the instantiation that you want.
See the section “ Executing to a Selected Line” on page 138 for a description
of how thisworks.

3. Display the Go/Halt/Step/Next/Hold submenu and select the Set PC to

Selection... (p) command. TotalView asks for confirmation, resets the PC,
and moves the PC icon to the selected line.

TotalView User's Guide 143



CHAPTER 6: Debugging Programs

When you select aline and ask the debugger to set the PC to that line, Total View
attemptsto force the thread to continue execution at that statement in the currently
selected stack frame. If the currently sel ected stack frameisnot thetop stack frame,
the debugger asks your permission to unwind the stack:

This frame is buried. Should we attenpt to unw nd
t he stack?

If you select Y es, the debugger discards all deeper stack frames (that is, all stack
frames that are more deeply nested than the selected stack frame) and resets the
machine registers to the proper value for the selected frame. If you select No, the
debugger sets the PC to the selected line, but it leaves the stack and registersin
their current state. Sinceyou cannot assumethat the stack and registershave correct
values, selecting No can cause problems. We recommend that you select Yes.

In general, we only recommend setting the PC to an absolute address for very
advanced users. If you need to do this, make sure you have the correct address; no
verification is done.

To set the PC to an absolute address:

1. Display the Go/Halt/Step/Next/Hold submenu and select the Set PC to
Absolute Value... command. A dialog box prompts you for a hexadecimal
address.

2. Enter the hexadecimal address into the dialog box.

3. Select OK. The debugger resets the PC and moves the PC arrow to theline
containing the absol ute address.

Deleting Processes

To delete aprocess or group of processes, display the Arguments/Cr eate/Signal
submenu and select the Delete Program (*Z)) command. If the processis part of
amultiprocess program, the debugger deletes all related processes as well. The
next timeyou start the process, for exampl e, by using the Go Pr ocess(g) command,
the debugger creates and starts a fresh process.

144 TotaView User's Guide



Restarting Programs

Restarting Programs

Y ou can use the Restart Program command to restart a program that is running
or one that is stopped but has not exited. To restart a program, choose Restart
Program from the Arguments/Cr eate/Signal submenu in the process window.

If the process is part of a multi-process program, TotalView deletes al related
processes, restarts the master process, and runs the newly created program.

Note:  The Restart Program command is equivalent to the Delete
Program (*Z) command followed by the Go Process ()
command.

TotalView User's Guide 145



CHAPTER 6: Debugging Programs

146 TotaView User's Guide



CHAPTER 7:

Examining and Changing Data

Thischapter explainshow to examine and change dataasyou debug your program.
You'll learn how to:

Display variable windows
Diveinto variables

Change the values of variables
Change the data types of variables
Display machine instructions
Change the addresses of variables
Display C++ and Fortran types
Display array dlices

Display the value of avariablein all processes or threads

Visudize array data
Display mutexes
Display conditional variables

TotalView User's Guide 147



CHAPTER 7. Examining and Changing Data

Displaying

Local Variables

and Registers

Local variable

Register —

Displaying Variable Windows

Y ou can display variable windows for local variables, registers, global variables,
areas of memory, and machine instructions.

In the stack frame pane of the process window, you can dive into any formal
parameter, local variable, or register to display a variable window. Y ou can also
diveinto formal parameters and local variablesin the source code pane. The
variable window lists the name, address, data type, and value for the object, as
shown in Figure 50.

TR seing in_pipe_fds N0
{at (weffff3bc) Type: int[2] Q
Slicer [:]
Index Value
[0l Oueffffide (-268438564)
[11 Q00000005 (5}
AR nain:Se
{in 5P) Type: <void> i
Yalue: Oxeffffled (-268439064)

<

Figure50. Divinginto Local Variables and Registers

You can aso display alocal variable using the Variable... (v) command of the
Function/File/Variable submenu in the process window. When prompted, enter
the name of the variable in the dialog box.

If you keep the variable windows open while you continue to run the process or
thread, the debugger updates the information in the windows when the process or
thread stops for any reason. When Tota View isunableto find astack framefor a
local variablethat iscurrently displayed, Stale appearsin the pane header to warn
you that you cannot trust the data, since no such variable exists.

148 TotaView User's Guide



Displaying a
Global Variable

Displaying All
Global
Variables

Displaying Variable Windows

Note:  When you debug recursive code, TotalView does not
automatically refocus adata pane onto the leaf invocation of
arecursive function. If you have a breakpoint in arecursive
function, you might need to explicitly open anew data pane
to seethe value of alocal variablefor that stack frame. This
is so, even though there is awindow that shows the same
variable in the same function for a higher invocation.

You can display aglobal variablein two different ways:

» Divinginto the variable in the source code pane.

» Displaying the Function/File/Variable submenu and selecting the
Variable... (v) command. When prompted, enter the name of the variablein
the dialog box.

A variable window appears for the global variable, as shown in Figure 51.

e previous (19776,23
{at 0x20000678) Type: double

[

Yaluey 96

=

Figure51. Variable Window for a Global Variable

For convenience, you can display all global variables used by the current process.
To do so, display the Function/File/Variable submenu and select the Global
VariablesWindow (V) command. A global variableswindow appearslisting the
name and value of every global variable used by the process, as shownin

Figure 52.

TotalView User's Guide 149



CHAPTER 7. Examining and Changing Data

Displaying
Areas of
Memory

i Globals for “"filter<expri,1,1" {19776}

context: (Array)
nextchar; QufFFFFFFE (=12
previous: 95

[

4l

Figure52. Global Variables Window

If desired, you can display avariable window for any global variable listed in the
global variables window. To do so, €either:
» Diveinto the variablein the global variables window.

e Select the Variable... (v) command from the global variables window, and
enter the name of the variable in the dialog box.

Y ou can display areas of memory in hexadecimal and decimal. To do so, display
the Function/File/Variable submenu and select the Variable... (v) command.
When prompted, enter one of the following in the dialog box:

* A hexadecimal address

When you enter a single address, the debugger displays the word of data
stored at that address.

e A range of hexadecimal addresses

When you enter arange of addresses, the debugger displaysthedata(inword
increments) between thefirst and last address. To enter arange of addresses,
enter the first address, acomma (,), and the last address.

Note:  All hexadecimal addresses must have the “0x” prefix.

The variable window for an area of memory, shown in Figure 53, displays the
address and contents of each word increment.

150 TotaView User's Guide



Displaying Variable Windows

Starti ng location —_—l————— 0:0001106c, 0001108
Of memory area {at (u0001106c) Type: <woid>[8] ﬁ
Slice: [1]
. Addresz  Value
Hexadecimal ,
0x0001106c: Oxe07bffc (-G3R363012)
value Q0011070 OebO140000 {-13408665607
0000110742 0xB1c7e008 (-2117607416)
0000110782 0xB180000 {-2115502080)
000011073 000010000 {F5526)
. 0000110803 000010000 {E5536)
Decimal Q0011084 (00010000 (EE536
. 0000110881 (00010000 {FEGZE) ||
equivalent 2 2 ] B!
Figure53. Variable Window for Area of Memory
Di Sp| ayi ng Y ou can display themachineinstructionsfor entire routinesin thefollowing ways:
Machine

: » Diveinto the address of an Assembler instruction in the source code pane
Instructions (such as main+0x10 or 0x60). A variable window displays the instructions
for the entire function and highlights the instruction that you dived into.

» Diveinto the PC in the stack frame pane. A variable window lists the
instructions for the entire function containing the PC, and highlights the
instruction to which the PC points, as shown in Figure 54.

Function main

{at 0x00010s28) Tupe: <code>[154]
Slice: [:]

Addres= Value Dizassenbly Offzet+Label
000010e28: (x9de3be?d  save #ap,-0x188, ¥sp main
Oe00010e20: Oxf227a048 st i1, [Efp+0x4a] Oxd+main
000010303 Oxf027a044 st Fi0, [Efpixdd] (xB+main
0000102343 Oxe007a044  1d [Efp+0x441,¥10 (xc+main
000010e38: (xB0a42002  subcc 10, 0x2, %g0 (xd0+main
000010e3c: 016800011 bge mair+0x5hg Oxld+main
000010403 (01000000 nop 0x18+main
(0001044 023000088 sethi Ahi 0220000, 211 (xlctmain
000010248y 0252146180 or #11, 0180, 211 Ox20+main &

Figure54. Variable Window with Machine Instructions

» Cast avariable to type <code>, as described in “Changing Type Strings to
Display Machine Instructions’ on page 163

TotalView User's Guide 151



CHAPTER 7. Examining and Changing Data

Closing
Variable
Windows

When you are finished analyzing the information in a variable window, you can
issue the Close Window (q) command (to close the window) or the Close All
Similar Windows (Q) command (to close all variable windows).

Base window

Diving in Variable Windows

If the variable you display in avariable window is a pointer, structure, or array,
you can dive into the contents listed in the variable window. This additional dive
is caled anested dive. When you perform a nested dive, the variable window
replacestheoriginal information with information about the current variable. With
nested dives, the original variable window is known as the base window.

Figure 55 shows the results of diving into avariable in the stack frame pane of
main() in the process window. In this example, we dove into a variable named
node with atype of node_t*, which isapointer. Thefirst variable window (base
window) in the figure displays the value of node.

Jmaininode (19776,2)

First dive
(onthevariable
node_t*, apointer)

Nested window
Second dive

{at Ox2FF221b8) Type: node_t* s Undive

Value: 0x20000563 icon

(on the value of
node _t*)

st maing#node (10776, 27 i A
> {at 0x20000528) Type: node_t j:t
Field Type Value
node_class enum node_class_t ho_add (43}
u struct <nameles=3> {Compound Object}
node struct <nameles=Z> {Compound Object}
left struct node_t# (20000588
right struct node_t# 020000528
value double 1,49368267690030e-154
5!

Figure55. Nested Dives

Then, we dove on the value shown in the base window, and a nested dive window
replaced it. The nested dive window is shown at the bottom of the figure; it shows
the structure referenced by the node_t* pointer.

152 TotaView User's Guide



Changing the Values of Variables

Also, noticethat thenumber of right angle brackets (>) intheupper left hand corner
indi catesthenumber of nested divesthat wereperformedinthewindow. TotalView
maintains each dive as part of a dive stack.

Y ou can manipulate variable windows and nested dive windows in the following
ways:

To “undive’ from a nested dive, you click the Dive mouse button on the
undive icon, and the previous contents of the variable window appears.

If you have performed several nested dives and want to create a new base
window, select the New Base Window command from the variable window.

If you diveinto avariable that already has a variable window open, the
variablewindow popstothesurface. If youwant aduplicate variablewindow
open, hold down the Shift key when you dive on the variable.

If you select the Duplicate Window command from the variable window, a
new variable window appears that is a duplicate of the current variable
window except that it has an empty dive stack.

Changing the Values of Variables

Y ou can change the value of any variable or the contents of any memory location
by completing these steps in the variable window:

1

2.

Select the value and use the field editor to change the value as desired.

Y ou can type an expression as the value, including logical operators, if
desired. For example, you can enter 1024* 1024.

Press Return to confirm your changes.

Y ou can also edit the value of variables directly from the stack frame pane by
selecting them.

Note:  You cannot change the value of bit fields directly, however,

you can use the expression window to assign avaueto abit
field. See “Evaluating Expressions’ on page 215.

TotalView User's Guide 153



CHAPTER 7. Examining and Changing Data

How TotalView
Displays C Data
Types

Changing the Data Type of Variables

The data type that you declared for the variable determines its format and size
(amount of memory) in the variable window. For example, in C, if you declare an
int variable, the debugger displays the variable as an integer.

Y ou can change the way datais displayed in the variable window by editing the
datatype. Thisisknown astype casting. Total View assignstype stringsto al data
types, and in most cases, they are identical to their programming language
counterparts.

»  Whendisplaying aC variable, TotalView type stringsareidentical to C type
representations, except for pointersto arrays. By default, TotalView uses a
simpler syntax for pointersto arrays.

*  When displaying a Fortran variable, TotalView type strings are identical to
Fortran type representations for most data types, including INTEGER,
REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and
CHARACTER.

To change atype string in a variable window:
Using thefield editor, edit the type string in the type field for the window. If

the window contains a structure with alist of fields, you can edit the type
strings of the fields listed in the window.

Note:  Whenyouedit atypestring, the Total View debugger changes
how it displays the variable in the current variable window,
but other windows listing the variable remain the same.

TotalView’s syntax isidentical to C cast syntax for all datatypes except pointers
to arrays. Thus, you use C cast syntax for int, unsigned, short, float, double,
union, and all named struct types.

Y ou read Total View type strings from right to left. For example, <string>*[20]*
isapointer to an array of 20 pointersto <string>.

Table 11 shows some common type strings.

154 TotaView User's Guide



Changing the Data Type of Variables

Table11l. Common Type Strings

Type String M eaning

int Integer

int* Pointer to integer

int[10] Array of 10 integers

<string> Null-terminated character string

<string>** Pointer to a pointer to anull-terminated character
string

<string>*[20]*  Pointer to an array of 20 pointersto null-
terminated strings

The following sections comment on some of the more complex type strings.

If You Prefer C If desired, you can always enter C cast syntax verbatim in the type field for any
Cast Syntax type, and the debugger will understand it. In addition, the debugger can display C
cast syntax permanently if you set an X Window Resource. See
“totalview* cTypeStrings. {true | false}” on page 267 for further information.

Pointersto Ar rays Supposeyou declared avariable vbl as apointer to an array of 23 pointersto an
array of 12 objects of type mytype t. To declare the variablein your C program,
you use the syntax:

nytype_t (*(*vbl)[23]) [12];
To cast vbl to the same typein your C program:

(mytype_t (*(*)[23])[12])vbl
TotalView’ s type string syntax for vbl would be:

nytype_t[12]*[23]*

TotalView User's Guide 155



CHAPTER 7. Examining and Changing Data

Arrays

Array type names can include a lower and upper bound separated by a colon.

By default, the lower bound for aC or C++ array is 0, and the lower bound for a
Fortran array is 1. In the following example, an array of integersisdeclared in C
and then in Fortran:

int a[10]
i nteger a(10)
In the C example, the elements of the array range from a[0] to a[9], whilein the

Fortran example, the elements of the array range from a(1) to a(10).

When the lower bound for an array dimension is the default for the language,
TotalView displays only the extent (that is, the number of elements) of the
dimension. Consider the following array declaration in Fortran:

i nteger a(1:7,1:8)

Since both dimensions of the array use the default lower bound for Fortran (1),
TotalView displays the data type of the array using only the extent of each
dimension, asfollows:

i nteger(7,8)

In the case where an array declaration does not use the default lower bound,
TotalView displays both the lower bound and upper bound for each dimension of
the array. For example, in Fortran, an array of integers with the first dimension
ranging from —1 to 5 and the second dimension ranging from 2 to 10 is declared
asfollows:

i nteger a(-1:5,2:10)
TotalView displays the following data type for this Fortran array:

i nteger(-1:5,2:10)

When you edit adimension of an array in TotalView, you can enter just the extent
(if using the default lower bound) or both the lower and upper bounds separated
by acolon.

If desired, you can display a subsection of an array. Refer to “Displaying Array
Slices’ on page 172 for further information.

156 TotaView User's Guide



Typedefs

Structures

Unions

Changing the Data Type of Variables

The debugger recognizes the names defined with typedef, but displays the
definition of such atype (that is, the base data type), rather than the name. For
example, if you declared the following:

typedef double *dptr_t;
dptr_t p_vbl;

The debugger displays the type string for p_vbl as double*, not as dptr_t.

For structures, the debugger treats the string struct as a keyword. Y ou can type
struct in as part of the type string, but it is optional. If you have a structure and
another data type with the same name, you must include struct with the name of
the structure so the debugger can distinguish between the two data types.

If you name a structure using typedef, the debugger usesthe typedef name asthe
type string. Otherwise, the debugger uses the structure tag for the struct.

For example, consider the structure definition:

typedef struct mystruc_struct {
int field_1;
int field_2;

} nystruc_type;

Thedebugger displaysmystruc_typeasthetypestringfor struct mystruc_struct.

The debugger does not understand actual structure definitions in the type string.
For exampl e, thedebugger doesnot understandthetypestringstruct {int a; int b;}.

The debugger displays aunion as it does a structure. Even though the fields of a
union are overlaid in storage, the debugger displays them on separate linesin the
variable window.

Note:  WhentheTotal View debugger displayssomecomplex arrays
and structures, it displaysthe (Compound Object) or (Array)
type strings in the variable window. Editing the (Compound
Object) or (Array) type strings might yield undesirable
results. We do not recommend editing these type strings.

TotalView User's Guide 157



CHAPTER 7. Examining and Changing Data

Built-In Type

Strings

TotalView provides a number of predefined types. These types are enclosed in
angle brackets to avoid conflict with types already defined in the language. You
can use these built-in types anywhere a user-defined type can be used, such asin
an expression. These types are also useful when debugging executables with no
debugging symbol table information. Table 12 lists the built-in types.

Table12. Built-In Type Strings

Type String Language Size Meaning

<string> C char Array of characters

<void> C long Area of memory

<code> C parcel Machine instructions

<address> C void* Void pointer (address)

<char> C char Character

<short> C short Short integer

<int> C int Integer

<long> C long Long integer

<long long> C long long Long long integer

<float> C float Single-precision floating-point number

<double> C double Double-precision floating-point
number

<extended> C longdouble  Extended-precision floating-point
number?

<character> Fortran character Character

<integer> Fortran integer Integer

<integer*1> Fortran integer*1 One-byte integer

<integer*2> Fortran integer*2 Two-byte integer

158 TotaView User's Guide



Changing the Data Type of Variables

Table12. Built-In Type Strings (Continued)

Type String Language Size Meaning

<integer*4> Fortran integer*4 Four-byte integer

<integer*8> Fortran integer*8 Eight-byte integer

<logical> Fortran logical Logical

<logical* 1> Fortran logical*1 One-byte logical

<logical* 2> Fortran logical*2 Two-byte logical

<logical* 4> Fortran logical*4 Four-byte logical

<logical*8> Fortran logical*8 Eight-byte logical

<real> Fortran real Single-precision floating-point number

<real*4> Fortran real*4 Four-byte fl oating-point number

<real*8> Fortran real*8 Eight-byte floating-point number

<real* 16> Fortran real*16 Sixteen-byte floating-point number

<double precision> Fortran double Double-precision floating-point
precision number

<complex> Fortran complex Single-precision floating-point

complex number®

<complex* 8> Fortran complex*8 real* 4-precision floating-point
complex number?

<complex* 16> Fortran complex*16  real*8-precision floating-point
complex number®

1. A parcel isdefined to be the number of bytesrequired to hold the shortest instruction for the target
architecture.

2. Extended-precision nhumbers must to be supported by target architecture.

3. complex types contain a Real_Part and an Imaginary_Part, which are both of typereal.

4. complex* 8 types contain a Real_Part and an Imaginary_Part, which are both of type real* 4.
5. complex* 16 types contain a Real_Part and an Imaginary_Part, which are both of type real* 8.

TotalView User's Guide 159



CHAPTER 7. Examining and Changing Data

Character arrays
(<string> data
type)

Areas of memory
(<void> data type)

I nstructions
(<code> data type)

The following sections give more detail about several of the built-in types.

If youdeclareacharacter array aschar vbl[n], thedebugger automatically changes
the typeto <string>[n], a null-terminated, quoted string with a maximum length
of n. Thus, by default, the array is displayed as a quoted string of n characters,
terminated by anull character. Similarly, thedebugger changeschar* declarations
to <string>* (apointer to a null-terminated string).

Since many character arraysin C areindeed strings, the debugger’ s<string> type
string can be very convenient. If, however, you intended the char datatypeto be
apointer to asingle character or an array of characters, you can edit the <string>
back to achar (or char[n]) to display the variable as you declared it.

The debugger usesthe <void> type string for data of an unknown type, such asthe
data contained in registers or in an arbitrary block of memory. The <void> type
string is similar to the int in the C language.

If you dive into registers or display an area of memory, the debugger lists the
contentsasa<void> datatype. Further, if youdisplay anarray of <void> variables,
the index for each object in the array is the address, not an integer. This address
can be useful when you display large areas of memory.

If desired, you can change a<void> type string to any other legal type. Likewise,
you can change any legal type into a <void> to see the variable in hexadecimal.

The debugger uses the <code> data type to display the contents of alocation as
machine instructions. Thus, to look at disassembled code that is stored at any
location, dive on the location and change the type string to <code>. To specify a
block of locations, use <code>[n], where n is the number of locationsto be

displayed.

160 TotaView User's Guide



Type Casting
Examples

Example:
Displayingtheargv
Array

Example:

Displaying
Declared Arrays

Example:

Displaying
Allocated Arrays

Changing the Data Type of Variables

This section contains some common type casting examples.

Typically, you declare ar gv, the second argument passed to your main() routine,
aseither achar **argv or char *argv|[ ]. Since these declarations are equivalent
(apointer to one or more pointersto characters), the debugger converts both to the
type <string>** (a pointer to one or more pointers to null-terminated strings).

Suppose ar gv pointsto an array of 20 pointersto character strings. To edit thetype
string (<string>**) so that the debugger displaysthe array of 20 pointers:
1. Select thetype string for argv.
2. Edit the type string using the field editor commands. Change it to:
<string>*[20]*
3. Todisplay the array, dive into the value field for argv.

Y ou can display declared arrays in the same way you display local and global
variables. In the stack frame or source code pane, dive into the declared array. A
variable window displays the elements of the array.

C code uses pointers for dynamically allocated arrays. For example, consider the
following:
int *p = malloc(sizeof(int) * 20);

In this example, TotalView doesn’t know that p actually pointsto an array of
integers. To display the array:

1. Diveon thevariable of typeint*.

2. Changeitstypeto int[20]*.

3. Diveon the value of the pointer to display the array of 20 integers.

TotalView User's Guide 161



CHAPTER 7. Examining and Changing Data

Opague Type Definitions

An opaquetypeisadatatypethat isnot fully specified. For examplethefollowing
C declaration defines p with atype of pointer to opaque struct foo:

struct foo;
struct foo *p;

When TotalView encounters type information that indicates a type is opague, it
entersthetypeinto the type tablewith <opaque> appended to the type name. With
the previous example, TotalView entersthe following type namein the type table:

struct foo <opaque>

If thetypeisopague and another modul e definesthetypefully, then you can delete
<opaque>fromthedatatypeto have Total View find thereal definitionfor thetype.

Ontheplatformswhere Total View useslazy reading of the symbol table, you must
force TotalView to read the symbols from the module containing the full type
definition of theopaguetype. Usethe Functionor Filecommandtoforce Total View
to read the symbols, as described in “Finding the Source Code for Functions” on
page 116.

Changing the Address of Variables

Y ou can edit the address of avariablein avariable window. When you edit the
address, the variable window shows the contents of the new location.

Y ou can aso enter an address expression, such as 0x10b8-0x80.

162 TotaView User's Guide



Changing Type Strings to Display Machine Instructions

Changing TypeStringstoDisplay M achine
Instructions

Y ou can display machine instructions in any variable window. To do so:

1. Select thetype string at the top of the variable window.

2. Changethetypestringtobean array of <code> datatypes, wherethe number
of elements, n, indicates the number of instructions to be displayed:

<code>[n]

The debugger displays the contents of the current variable, register, or area
of memory, as machine-level instructions.

The variable window (shown in Figure 54 on page 151) lists the following
information about each machine instruction:

Address The machine address of the instruction.

Value The hexadecimal value stored in the location.
Disassembly Theinstruction and operands stored in the location.
Offset+L abel The symbolic address of thelocation as ahexadecimal

offset from aroutine name.

Y ou can aso edit the value listed in the value field for each machine instruction.

TotalView User's Guide 163



CHAPTER 7. Examining and Changing Data

Displaying C++ Types

Classes TotalView displays C++ classes and accepts the string class as a keyword. When
you debug C++, TotalView also accepts the unadorned name of a class, struct,
union, or enum in the type field. TotalView displays nested classes showing the
derivation by indentation. For example, Figure 56 shows how Total View displays
aclassc, defined asfollows:

class b {
char * b _val;
publi c:
b() {b_val = “b value“;} };

class d : virtual public b {
char * d_val;

publi c:
d() {d_val = “d value“;} };

class e {
char * e val;
publi c:
e() {e_val = “e value“;} };

class ¢ : public d, public e {
char * c_val;
publi c:
c() {c_val = “c value“;} };

obj {(BS77)
{at 0x000208b8% Type: clas=z c j:t
Field Type Value
d class d {Public base class)
b class b Virtual public baze class})
b_wal Latrings# 0x00020888 > "b walue"
d_wal Latrings# 000020830 > "d walue"
[ class e {Public base class)
e_val <string* 000020898 -> "e wvalue" ||
c_val Latrings# 000020830 > "¢ walue" Y

Figure56. Displaying Nested C++ Classes

164 TotaView User's Guide



Changing Class
Typesin C++

Displaying C++ Types

Note:  Some C++ compilersdo not output accessi bility information.
In these cases, the information is omitted from the display.

Based on the C++ derivation hierarchy for aclass, TotalView triesto display the
correct data when you change the type of a data pane to move up or down the
derivation hierarchy.

If achangein the datatype also requires achange in the address of the datathat is
currently displayed, TotalView queries you about changing the address. For
example, if you edit the type field in the class ¢ shown in Figure 56 to class e,
TotalView queries as shown in Figure 57:

Cazting c to itz base clasz e requires a change to the address,
Do you want TotalView to do that 7

Figure57. C++ Type Cast to Base Class Dialog Box

If youanswer yes, Total View changesthedataand addressto ensurethat it displays
the correct base class member. If you answer no, then Total View displaysthearea
of store asthough it is an instance of the type you cast to, but the address is
unchanged.

Similarly, if you change a data type in the data pane in order to cast a base class
to aderived class, and that change requires a change to the address, TotalView
asks you to confirm the operation. For example, Figure 58 show the dial og posted
if we cast the from classeto class c:

Cazting from e to itz derived class c requires a change to the address,
Do you want to do that 7

Figure58. C++ Type Cast to Derived Class Dialog Box

TotalView User's Guide 165



CHAPTER 7. Examining and Changing Data

Displaying Fortran Types

TotalView allows you to display FORTRAN 77 and Fortran 90 data types.

Di Sp| ayi ng TotalView handles Fortran common blocks in amanner consistent with the

Fortran semantics of Fortran. The names of common block members have function scope,
not global scope.

Common Blocks
For each common block that isdefined within the scope of asubroutine or function,
TotalView creates an entry in that function’s common block list. The stack frame
paneintheprocesswindow displaysthennameof each common block for afunction.

TotalView creates a user defined data type for the common block. in which each
of the common block members are fields in the type. If you dive on a common
block namein the stack frame pane, Total View displays the entire common block
in avariable window, as shown in Figure 59.

IR Stack Frame N0,

Function ", _main"i i
Mo arguments, ]

Common bl OCk IISt _E Cogzsgk?lﬂckst {Compound Objecty
in stack frame pane

Registers for the frame:

T . _maingstock £17802,1 MMM
cf fat 0x20000B83) Type: typelstock) j;t
RT0 Field Type Value
Dive on common ———cau float 1.1
sheep float 2,2
block to see elements Lanb integerkd 3 (0xOD000003)
steer float 4.4
goat float 5.5
=]

Figure59. Divinginto Common Block List in Stack Frame Pane

If you dive on acommon block member name, Total View searchesall the common
blocksfor amatching member nameand displaysthemember inavariablewindow.

166 TotaView User's Guide



Displaying
Fortran Module
Data

Fortran modul e window

Diveon modulenameto
see data window
containing module
variables

Diveonmodulevariable
to see datawindow with
more detail

Displaying Fortran Types

Normally, TotalView displaysthe initial address for acommon block in the data
pane. When the common block is a composite object with separate addresses for
each component, TotalView displays the M ultiple tag to indicate that thereisno
single address that can be given for the value of the address of the whole object.

TotalView triesto locate all of the data associated with a given Fortran module
and provide a single display that contains all of it. For functions and subroutines
defined in the module, Total View adds the full module data definition to the list
of modules displayed in the stack frame pane.

For functionsthat useamoduleit isoften not possibleto determine from the debug
information either that a module has been used, or what the true names of the
variablesin the module were. In this case (depending on what debug information
isavailable), module variables either appear aslocal variables of the subroutine,
or amodule appears on the list of modulesin the stack frame pane that contains
(with appropriate renaming) only the variables used by the subroutine.

Alternatively, you canview alist of al of themodulesof which Total View isaware
by using the Fortran Modules Window (M) command from the
Function/File/Variable submenu. This window behaves like the Global
Variableswindow, so you can dive through an entry to display the actual module
data. See Figure 60.

Modules for "ptr_in_type_in_mod" {13416}

[

Modules from “ptr_in_type_in_mod”
—t test_module: (Module:

test_module {13416,3}

{Multipled Type: typeltest_module? j;i
Field Type Value
dataZ typeidata_typelii}, pointer (0140015000 -> (Array)
— datal typeidata_typelii}, pointer (0140013600 -> (Array)
test_module *data? (13416,3)
> fat 0x140015000% Tupe: tupe{data_tupel(:}
Actual Type: typeldata_type: (7}
lice: (1)
Field Type Value
i1y typeidata_typel {Compound Object}
a real®8{:) pointer (0140013240 -> (Array)
2y typeidata_typel {Compound Object}
a real®8{:) pointer (0140013250 - (Array)
(3 typeidata_typel {Compound Object}
= L = M A0 ZhOt =% ey

Figure60. Fortran Modules Window

TotalView User's Guide 167



CHAPTER 7. Examining and Changing Data

Debugging
Fortran 90
Modules

Note:  SUNPro compiler users: it is not possible to find out which
modules exist in aprogram without reading all of the debug
information for the program. To display module data, you
must ensurethat the debug information for afilethat contains
the module definition or amodule function has been read.

In Fortran 90 or 95, you can place functions, subroutines, and variablesinside
modules. These modules can then be USEd by other compilation units to include
the definitions from the module.

When modules are USEd, the names in the module become available in the using
compilation unit, unless they have been excluded by USE, ONLY!, or renamed.
This means that from the Fortran source code you do not need to explicitly name
amodule function or variable.

However when debugging in TotalView, you may want to view the source for a
specific function that existsin amodule, and whose nameisalso used asafunction
in other modules. Similarly, when looking at a stack backtrace, it isimportant to
know which of the functions has actually been called. To make this clear,
TotalView uses the syntax:

modulename functionname

when it displays a function from amodule. Y ou can use this syntax explicitly in
the “Function or File (f)” command in the Function/File/Variable menu.

Fortran 90 a so introduced the idea of a contained function that is only visiblein
the scope of its parent and siblings. Once again, there can be many contained
functionsin aprogram, all using the same name. TotalView usesasimilar syntax
to disambiguate these functions. If the compiler mangled the function namefor the
nested function, TotalView displays it with this syntax:

parentfunction() containedfunction

If you give an ambiguous name for afunction, then TotalView displays dialog
showing al of the possible matching functions. See “ Finding the Source Code for
Functions” on page 116 for more information.

168 TotaView User's Guide



FO0 User
Defined Type

F90 Deferred
Shape Array

Type

Displaying Fortran Types

Within contained functions, al of the variables in the parent function are visible
and accessible viaa static chain. If the compiler has passed on information about
the static chain, TotalView can access these variables in the same way as the
compiled code does, and they will be visible in data panes, and from evaluation
points or expressions. If the compiler does not report about the static chain, then
TotalView canfind these up-level variablesand display thenin datapanes, but you
will not be able to use them in evaluation points or expressions.

A Fortran 90 user defined type issimilar to a C structure. TotalView displays a
user defined type as type(name), which is the same syntax used in Fortran 90 to
create auser defined type. For example, avariable of type(sparse), declared asin
the following code fragment, appearsin Figure 61.

type sparse

| ogical *1, pointer :: smask (:,:)
real, pointer :: osval (@)
character (20) .. heading

end type sparse

AERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRDRRRRRRRRRRRRRONOON HATN__ matedd DNNORRRRRRRRRRRROODIORRRRRRRRRRRRRRR RN

{at (u00070434) Type: typelsparsel j;i
Field Type Value
amask logical#liy, 1), pointer 0x00082ed8
aval reali:}, pointer TN
heading characters{20} "Matrix 1

4l

Figure6l. Fortran 90 User Defined Type

Fortran90 allows you to define deferred shape arrays and pointers. The actual
bounds of the array are not determined until the array is allocated, the pointer is
assigned to, or, in the case of an assumed shape argument to a subroutine, the
subroutineis called. The type of deferred shape arraysis displayed by TotalView
as type(:), in the same way that such an array would be declared in Fortran.

TotalView User's Guide 169



CHAPTER 7. Examining and Changing Data

F90 Pointer
Type

When Total View displaysthe datafor adeferred shape arrays, it displays both the
type used in the definition of the variable, and the actual type that thisinstance of
the variable has. The actual typeis not editable, since you can achieve the same
effect by editing the type.

Thetype of adeferred shaperank 2 array of REAL datawith runtimelower bounds
of -1 and 2, and upper bounds of 5 and 10 is shown in the following example:

Type: real (:,:)
Actual Type: real (-1:5,2:10)
Slice: (:,:)

A Fortran 90 pointer type allows you to point to scalar or array types. TotalView
displays pointer types as type,pointer, which is the syntax used in Fortran 90 to
create a pointer variable.

For example, apointer to arank 1 deferred shape array of real datawill be
displayed in the variable window as:

Type: real (:), pointer

To view the data itself, you must dive on the value.

Note:  WiththelBM xIf compiler, Total View cannot determinethe
rank of thearray from the debug information. Inthiscase, the
typeof apointer toanarray will appear as“type(...),pointer”.
The actua rank will befilled in correctly when you dive
through the pointer to look at the data.

Thevalue of the pointer isdisplayed asthe address of the datato which the pointer
points. This address not necessarily the array element with the lowest address.

TotalView implicitly handles any dlicing operations used to set up a pointer, or
assumed shape subroutineargument, sothat theindicesand valueswhichit displays
in the variable window for such a variable are the same as you would see in the
Fortran code.

170 TotaView User's Guide



For instance, in this code

i nt eger, dinension(10),
i nteger, dinension(:),
doi =1i,10

ia(i) =
end do

ip =>ia(10:1:-2)

Displaying Fortran Types

ia
ip

t ar get
poi nt er

after diving through the pointer value itself, ip displays shown in Figure 62.

EEESEEEEEEEE ia (LG EEEEEEEEEEE

Target array ia

Pointer ip into array ia

Address of ip(1)

Values reflect dice

Displaying
LargeArrays

{at (x00044dfc) Type: integer#4{10} il
Slice: (1)
Index Yalue
6} 1 {0x00000001 3
L2y ZUE=E========= i (Gl =ES========[aA]=
Ei; i E > {at 00004420} Type: integer#d(i) ﬁl
5 5 ¢ I Actual Tgpe: integer®d {5}
e — Slice: 412
Eg; g E Index  Value
Egé) 20(( 6} 10 (0000000023
(2 8 {0x00000008
(32 B £ 0x0000000E
(43 4 (000000004 3
(8} 2 (000000002
=

Figure62. F90 Pointer Vaue

This example a so shows why the address displayed for the data pane is not that
of the base of the array. Since the stride in the array descriptor is negative,
succeeding elements of the array are at lower absolute addresses. The address
displayed isthat of the array element with the lowest index (which may not be the
firstdisplayed element if you used adliceto display thearray with reversedindices).

TotalView can quickly display very large arraysin variable windows. If an array
overlapsnonexistent memory, theinitia portion of thearray iscorrectly formatted.
The array elements that fall within nonexistent memory, have “Bad Address’

displayed in the subscript.

TotalView User's Guide 171



CHAPTER 7. Examining and Changing Data

Slice
Descriptions

Displaying Array Slices

TotalView can display subsections of arrays, which are called dlices. Every
TotalView variable window that displays an array contains an additional Slice
field. You can edit thisfield to view subsections of your array. If the array has
more than one dimension, then you get the appropriate number of null slices, so,
for aC array declared

i nteger ia[10][20][5]

theinitial slicewill be [:][:][:].
For an F90 deferred shape array declared

integer, dinension (:,:) :: ia
theinitial slicewill be (:,:).
In other words, you get asmany colons (:) asthere are array dimensions. Initially,

the field contains either [:] for C arrays or (:) for Fortran arrays, which displays
the entire array.

A slice description consists of the following:

lower_bound:upper_bound:stride
This description specifies that Total View should display every stride element of
the array, starting at the lower_bound and continuing through the upper_bound,
inclusive.
For example, if you specified asliceof [0:9:9] for a10-element Carray, TotalView

displaysthe first element and last element (the 9th element beyond the lower
bound).

172 TotaView User's Guide



Displaying Array Slices

TotalView accepts array slices which are the same as those in Fortran 90, so the
dlice[Ib:ub:stride] represents the set of values of i generated by the append
statements in the following pseudo-code:

i =1b

if (stride > 0)
while (i <= ub)
append
i =i + stride

el se
while (i >= ub)
append
i =i + stride

In addition, TotalView accepts a number of extensions to the slices Fortran 90
would accept, since we assume that you want to have some elementsin the dlice.

Therefore, TotalView will treat aslice

[Ib: ub : stride]

where stride < 0 and ub > Ib as though it was intended to be the slice

[ub : Ib: stride]
and will reflect it as such in the slice display.

This extension also meansthat you can view adimension with reversed indexing
by using the dice
[::-1]

In Fortran 90, you would haveto explicitly give the upper and lower bounds of the
array to generate a suitable reverse indexed dlice.

In the case where the stride of adliceis 1, you can specify the slice with just two
numbers separated by colons: thelower and upper bounds. For example, to display
adlice of [0:9:1], you can specify the following:

[0:9]

Thedlice[0:9] displaysarray elementsOthrough 9, whereasthedlice[4:6] displays
array elements 4 through 6.

TotalView User's Guide 173



CHAPTER 7. Examining and Changing Data

If the stride is 1 and the lower and upper bound are the same number, you can
specify the dlice with just a single number, which indicates both the lower and
upper bound. For example, to display adlice of [9:9:1], you can specify the
following:

[9]
The dlice [9] displays element 9.

Note:  Thelower_bound, upper_bound, andstrideportionsof aslice
description must be constant values. Expressions are not
supported yet.

For multidimensional arrays, you can specify adlicefor each dimension using the
following syntax:

Cand C++ [dicg][dlice]...
Fortran (dicedlice,...)
Strides Y ou can use the stride of adlice either to skip elements of an array or to invert the

order in which elements of an array are displayed.

For example, if you specify adlice of [::2] for aC or C++ array (with a default
lower bound of 0), TotalView displays only the even elements of the array: 0, 2,
4, and so on. However, if you specify this same slice for a Fortran array (with a
default lower bound of 1), TotalView displaysonly the odd elements of the array:
1, 3,5, and so on. Asan example of skipping elementsinamultidimensional array,
you can specify adlice of (::9,::9) to display the four corners of a 10-element by
10-element Fortran array, as shown in Figure 63.

IR HAIs__ sareay I
{at (x0004e210) Type: real®*8(10,100 ﬁ
lice: (::9,::9)

Index Yalue

(1,1: 1

(10,1 10

(1,100 ,87231930302474e-299

{10,103 2621614, 64286283

Figure63. Slice Displaying the Four Corners of an Array

174 TotaView User's Guide



Displaying Array Slices

To invert the order in which elements are displayed, you can specify a negative
number as the stride of a dlice. If you specify adlice of (::—1), TotalView begins
with the upper bound of the array and displays the array in inverted order. For
example, if you specified this slice of (::—1) with a Fortran array of integer (10),
TotalView displays the following elements:

(10)
(9)
(8)

Y ou can useastrideto combineinverseorder with skipping el ements. For example,
if you specify adliceof (::—2), Total View beginswith the upper bound of the array
and displays every other element until it reachesthe lower bound of the array. For
example, if you specify this slice of (::—2) with a Fortran array of integer (10),
TotalView displays the following elements:

(10)
(8)
(6)

Y ou can a so combineinverse order and alimited extent to display asmall section
of alarge array. For example, if you specified aslice of (2:3,7::—1) with aFortran
array of real*4(—1:5,2:10), Figure 64 shows the elements that are displayed by
TotalView:

IR HAIN__ s areay2 I
{at (x0005cEa8) Type: reall-1:5,2:10% ﬁ
Slicey (2337113
Index Yalue
(2,100 B0
{3,100 E1
(2,9; 53
(3,9) 54
(2,8) 48
(3.8) 47
(2,71 29
(3,73 40 ]
<

Figure64. Fortran Array with Inverse Order and Limited Extent

Asyou can see in the figure, TotalView only showsin rows 2 and 3 of the array,
beginning with column 10 and concluding with column 7.

TotalView User's Guide 175



CHAPTER 7. Examining and Changing Data

Usi ng gSlicesin When you use the Variable (v) command to display a variable window, you can

the Variable include aslice expression as part of the variable name. Specifically, if youinclude
an array name followed by a set of slice descriptionsin the variable dialog box,
Command TotalView initializestheslicefield in thevariablewindow to the slice descriptions

that you specified.

If you include an array namefollowed by alist of subscriptsin the variable dialog
box, TotalView interprets the subscripts as a slice description rather than asa
request to display an individua value of the array. As aresult, you can display
different values of the array by changing the slice expression.

For example, suppose that you have a 20-element by 10-element Fortran array
named array?2, and you want to display element (5,5). Using the Variable (v)
command, you specify array2(5,5) in the dialog box, which setsthe initial slice
to (5:5,5:5), as shown in Figure 65.

I slice_areay2 N
{at 0x140001320% Type: real®4{0:19,0:3} 18]
Slice: (5:5,5:0)
Index Yalue
(5,5} 106
=]

Figure65. Variable Window for array?2

If desired, you can force Total View to display asingle valuein avariable window
by enclosing thearray nameand list of subscripts(that is, theinformation normally
included in a dlice expression) inside parentheses, such as (array2(5,5)). In this
case, the variable window just displays the type and val ue of the element and does
not show its array index.

176 TotaView User's Guide



Displaying a Variablein All Processes or Threads

Laminated scalar | (at 0x7FFF2c0Y Typet int 15}

Laminated scalar with

missi ng call framesinsome npirundflood>,0 010043040 - 0x00000000 (0}

jprocesses

Displaying a Variablein All Processes or
Threads

When you debug a parallel program that is running many instances of the same
executable, or amultithreaded program, it is often useful to view or update the
value of avariable in all of the processes (or threads) at once.

Todisplay thevalue of avariablein all of the processesin aparallel program, first
bring up a data pane displaying the value of avariable in one of the processes.
Thenyou canusethe Toggle L aminated Display (L ) command from thedatapane
menu to request that the panedisplay theval ueof thevariableinall of theprocesses.
To display the value of avariablein all threads within a single process, use the
ToggleThread Laminated Display (I) command. If you decidethat you nolonger
want the pane to be laminated, then you can use the same command to delaminate
it, and return it to being anormal data pane.

Thedatapaneswitchesto“laminated” mode, and displaysthevalue of thevariable
in each process or thread. Figure 66 showsadisplay of asimple, scalar variablein
each of four processes of an MPI code. Inthetop window, all of the processes have
the variablein amatching stack frame, so the valueisdisplayed for all of them. In
the bottom window, acorresponding variable cannot befound, so that information
is displayed in the data pane.

TR naingrank (Laminatedy IR0

Process Yalue

mpirun<flood>,0 (00000000 (0}
mpirun<flood>,1 00000001 (13
mpirun<flood>,2 00000002 (23
mpirun<flood>,3 00000003 (33

TN SetupRdatasrbuf Laninated? TN
(at OxPFFF2CT4) Tupe: int# i

Process Yalue

mpirun<flood>,1 <Haz no matching call frame:
mpirun<flood>,2 <Haz no matching call frame:
mpirun<flood>,3 <Haz no matching call frame:

4l

Figure66. Laminated Scalar Variable

TotalView User's Guide 177



CHAPTER 7. Examining and Changing Data

When looking for a matching stack frame to find the correct local variable to
display, Total View matches frames from the outermost frame inwards, and
considers calls from different sites to be different, so in code like the following:

int recurse (int i, int depth)
{
if (i == 0)
return depth;
if (i&l)
recurse (i-1, depth+1);
el se
recurse (i-3, depth+1);
}

The two callsto recur se generate stack frames that are not considered to match.

If thevariablesare at different addressesin the different processes or threads, then
the addressfield at thetop of the panedisplays (M ultiple) and the actual addresses
are displayed with each dataitem, as shown in Figure 67.

TN maing argy {Laminated) NIRRT
M U|t|p|e addre$ tag —lultiplel Type: <string>s i

Process Yalue

flood,0 (at OxFFFFFFad28)  OxFFFFFfaddd - OxfFFFFFFRO00D > “/nfs/
flood,1 {at OxfFFFFfadcd)  O0x10083600 —> OxfFFFFFFBOOO - “/nfs/vi
flood,2 {at OxfFFFFfadcl)  O0x10083600 —> OxfFFFFFFBOOO - “/nfs/vi
flood,3 {at OxfFFFFFadcl)  Ox10083600 —> OxFFFFFFBOOO - "/nfs/vi

Actual addresses

A

Figure67. Laminated Variable at Different Addresses

TotalView also allows you to laminate arrays and structures. When you laminate
an array, each element in the array is displayed across all processors. Aswith a
normal datapane, you can usethesliceto select el ementsto bedisplayed. Structures
are displayed to keep the individual structure elementstogether. Figure 68 shows
an example of alaminated array and alaminated structure. Y ou can also laminate
an array of structures.

178 TotaView User's Guide



Laminated array

Element[0] foreach |

of the processes

Structure elementsfor

one process

Laminated structure

Divingina

Laminated Pane

Editing a
L aminated
Variable

Visualizing a

L aminated Data

Pane

Displaying a Variablein All Processes or Threads

TR nainge (Laminatedy NI

{at Ou7FFf2e30) Type: MPI_Request[1R] i
lice: [:]

Index Yalue

[o1 {Laminate:

L mpirun<flood>, 3  (e0O00OO00 {0}
[11

npirundfloods, 0 Ox00000000 (0}
mpirun<flood>,1  (e00000000 (0}
mpirun<flood>,2  (e00000000 (0}

{Laminate:
mpirun<flood>,0  (x0fbESe3c (2636263003
mpirun<flood>,1 Ox0fbESe3c (2636263003

mPir‘un<F10 = Ly Ll Lo mird wip | ndr-dutul

wpi P 1 og IR ERERTRTAN) main:=00] CLaminated) T A
> lat 0x7FFf2cal Type: MPI_Status il
Field Type Value

Process mpirun<floods,0

I MPI_SOURCE int Ce00000003 (33

HPI_TAG int CaDO00000E (6>
HPI_ERROR int Q0000000 {03
zize int (00200000 (20971523
reserved int[2] {Array}

[0l int Q0000000 {03

[11 int CeDOO000ZF (B33

Process mpirun<floods,1

HPI_SOURCE int Q00000003 (33

HPI_TAG int Ouf FEFFFfe (=20
HPI_ERROR int Q0000000 {03
zize int (00200000 (20971523
reserved int[2] {Array}

[0l int Q0000000 {03

[11 int CeDOO000ZF (B33

Figure68. Laminated Array and Structure

Y ou can dive through pointers in alaminated data pane, and the dive will apply
to the appropriate pointer in each process or thread.

If you edit avaluein alaminated data pane, then you will be asked whether you
want thisupdateto apply to all of the processes or threads or only the oneinwhich
you demonstrated the change. Updating avariablein all of the processesisan easy
way to turn on a global debug flag, for instance.

Y ou can export datafromalaminated datapanetothevisualizer usingtheVisualize
command exactly asfor anormal data pane. However the process (or thread) index
will form the first axis of the visualization, and therefore you must use one fewer
data dimension than you normally would. If you do not want the process/thread
axisto be significant to the visualization, then you can simply use anormal data
pane, since al of the data must necessarily be in one process.

TotalView User's Guide 179



CHAPTER 7. Examining and Changing Data

Visualizing Array Data

The TotalView Visualizer is part of a suite of software development tools for
debugging, analyzing and tuning the performance of programs. It works with the
Total View debugger to create graphicimages of array datain your programs. This
letsyou seeyour datain one glance and quickly find problemswith it asyou debug
your programs.

The visualizer isimplemented as a self-contained process. It can be launched
directly by TotalView to visualize dataasyou debug your programs. Alternatively,
you can run the visualizer from the command line to visualize data dumped to a
filein aprevious TotalView session.

You interact with Total View to choose what you want to visualize and when the
snapshot of your datashould begrabbed. Y ouinteract with thevisualizer to choose
how you would like your data to be displayed.

For information about running the Total View Visualizer, see Chapter 9,
“Visualizing Data,” on page 231.

180 TotaView User's Guide



Displaying Mutex Information

Displaying Mutex Information

A mutex isamutual exclusion object that allows multiple threads to synchronize
access to shared resources. A mutex has two states: locked and unlocked. Once a
mutex has been locked by athread, other threads attempting to lock it will block.
When the locking thread unlocks (rel eases) the mutex, one of the blocked threads
will acquire (lock) it and proceed.

Note:  TheMutex Information window issupported only on Digital
UNIX.

The mutex information window containsalist of all mutual exclusions (mutexes)
known in this process. To get a mutex window click on the Mutex Info Window
command from the Process State | nfo submenu in the process window. See
Figure 69.

Mutexes for "fork_loop" (258963

Il Type Flags (urer Addresz  Mame ﬁ
1 1 (Wy w2 (L) 1 OxO0ZFFoO0B2770

201 (Hy 0x2 (L 1 O03FFcO0BZydo

32 Ry 0x2 (L} 1 Ox003FFoO0827d0

4 1 (Hy w2 (L 1 Ox003FFc0032818

b1 (N} 0x2 (L} (O0ZFF 0185903

E 1 (My ox2 (L) Q0ZFFo018a7el

Tl (N} OxZ (L (o 0ZFF 0185970

8 1 (Wy w2 (L) O O0ZEFF 0185260

9 1 (N} w2 (L) Lo ZFF o0 185hA0

10 1 (W ox2 L) O O0ZFF 0185040

11 1 €My ox2 L) Qe 0EFFo0180d30

121 fMy  0x2 L O 003FF 0185500

13 1 (M Ox2 L) Q0ZFFo01806a0

14 1 fM»  0x2 L O O0ZFF 0185730

15 1 (M) ox2 L) O D0ZFF 0180830

16 1 (M Ox2 L) (e 0ZFF o0183bda

17 1 (M Ox0 O O0ZFF 0183030

18 2 {R» 0«3 (LIN? 1 x003FFoo0obad  Global lock
19 1 (M» Ox0 O O0ZEFFe018b040

201 My Ox0 Q0EFFo018b033

201 My Ox0 Q0000140002417

221 (M Ox0 Q000140002470

22001 My Ox2 L (O0ZFF 0182633

24 3 By ox0 0 0000140000628 @

Figure69. Mutex Info Window

TotalView User's Guide 181



CHAPTER 7. Examining and Changing Data

For each mutex, TotalView displays the following information:

182 TotaView User's Guide

ID. Thisisthe sequence number assigned to this mutex by the threads
package. Diving into thisfield opens adatawindow containing aview of the
actual mutex data.

Type. The type contains the raw mutex type number, along with asingle-
character abbreviation of the type name. The following mutex types are
known to TotalView:

(N) A norma mutex.
(R) A recursive mutex.

(E) An error-check mutex. Error-check mutexes contain additional
information for use in debugging, such as the thread ID of the locker.
During program devel opment, you should probably use error-check
mutexes in place of normal mutexes, and only switch to the simpler
version when performance becomesanissue. Thetype of themutex can
be set using the pthread_mutexattr_settype np() call ontheattribute
object before the mutex isinitialized.

Flags. Flags are araw hex string containing the current mutex flags, along
withatext summary showing one-character abbreviationsfor each flagwhich
is set. The following mutex flags are known to TotalView:

0x8 (M) Metered. The mutex contains metering information.

0x4 (W) Waiters. One or more threads are waiting for this mutex. By
default, waiters are shown in red; their color is the same as the thread
error state flag color.

0x2 (L) Locked. The mutex islocked. By default, locked mutexes are
shown in blue; their color is the same as the thread stopped state flag
color.

0x1 (N) Name. This mutex has a name.

Owner (Error-check mutexes only). If the mutex islocked, asindicated by
theL flag, thisfield displaysthe system tid of the locking thread. Diving or
selecting on this number causes TotalView to display the process window
for the locking thread. Total View displays the same window if you dive or
select the thread's entry in the root window.



Displaying Mutex Information

If threads are waiting for this mutex, their system tids will be shown in the
owner field, with one thread ID displayed for each line in the window. Y ou
can open a process window for these waiting threads by diving or selecting
on its number.

Note:  TotalView may not be able to obtain thisinformation, in
which caseit will not show blocked-thread lines.

» Address. The address of the mutex in memory. Y ou can open adatawindow
containing aview of the actual mutex data by diving on thisfield. See
Figure 70.

¢ Name. If the mutex has aname, it is shown here.

Mutex 3 (25387,0-21)
{at Ox3FFc00327d0r Type: pthread_mutex_t ﬁ
Field Type Value
lock unzigned int Ox01300000 £19322944 )
valid unzigned int OxOdbcafel (2304696010
name Latringyk )
arg unzigned int 00000000 £03
depth unzigned int Q0000001 (1)
sequUEnce unzigned long CoeQOOOOAONAANNANZ {3}
owner unzigned long 0000000000001 {13
black void# 0140002910 => 0x0000000140002930 (53
@

Figure70. Mutex Data Window

TotalView User's Guide 183



CHAPTER 7. Examining and Changing Data

Displaying Condition Variable
| nfor mation

The window that displays the condition variables lists all the condition variables
known in this process.

Note:  TheCondition Variableswindow issupportedonly onDigital
UNIX.

To get a Condition Variables window, click on the Condition Variable Info
Window command inthe Process State | nfo submenu of the processwindow. See

Figure 71.
Condition Yariables for “fork_loop" (848}
I Flags [Haiters] Hutex Address  Mame j:t
1 G 0x003FFcO082548
2 (0 0x003FFCO0B2E70
ER ] 0x003FFc0183c08
4 00 0x003FFe0183cE0
B Ox0 0x003F Fc0180070
SR 0] Qx003FFc18b0ch
7l Qx0000140002448
8 Oxh 0x00001400024.20
9 00 0x0000140000748
=

Figure71. Condition Variable Window
For each condition variable, TotalView displays the following information:

» ID. ThelD isthe sequence number assigned to this condition variable by the
threadspackage. Divinginto thisfield opensadatawindow containing aview
of the actual condition variable data.

» FHags. Flags are araw hex string containing the current condition variable
flags, with atext summary showing one-character abbreviationsfor each flag
which is set. The following flags are known to Total View:

. 0x8(M)

Metered. This condition variable contains metering information.

184 TotaView User's Guide



Displaying Condition Variable Information

. Ox4 (W)

Waiters. One or more threads are waiting for this condition variable.
By default, thisisshowninred; itscolor isthe same asthe thread error
state flag color.

. 0x2(P)

Pending. A wakeup is pending for this condition variable. By default,
thisis shown in blue; its color is the same as the thread stopped state
flag color.

e« Ox1(N)
Name. The condition variable has a name.

Waiters. If threads are waiting for this condition variable, their system tids
will be shown in the Waiter sfield, one thread for each line, on the lines
following the condition variable. Diving or selecting entriesin the list of
waliting threads will open windows for them.

Note:  TotaView may not be able to obtain thisinformation, in

which case no waiting threads will be shown.

Mutex. Thisfield hasthelD of themutex used to guard the condition variabl e.
Diving into thisfield opens a data window containing a view of the actual
guard mutex data, if the| D can betrandated to an address. For thetransation
to bepossible, theguard mutex must be correctly initialized. That can bedone
statically or by using an attributes object. See the mutex and condition
variable man pages for more information.

Address. Thisfield containsthe address of the condition variablein memory.
Diving into the address field opens a data window containing a view of the
actua condition variable data.

Name. If the condition variable has a name, it will be shown here.

TotalView User's Guide 185



CHAPTER 7. Examining and Changing Data

186 TotaView User's Guide



CHAPTER 8:

Setting Action Points

This chapter explains how to use action points. Total View supports three kinds of
action points: breakpoints, process barrier breakpoints, and evaluation points. A
breakpoint stops execution of processes and threadsthat reachit. A processbarrier
breakpoint holds each process that reaches it until all processes from the group
reachit. An evaluation point causes a code fragment to execute whenit isreached.

In this chapter, you'll learn how to:

Set breakpoints

Set evaluation points

Set conditional breakpoints

Patch programs

Set process barrier breakpoints

Choose between interpreting and compiling expressions
Control action points

Save action pointsin afile

Evaluate expressions

Write code fragments

Write assembler code (Alpha Digital UNIX and AIX systems only)

TotalView User's Guide 187



CHAPTER 8: Setting Action Points

Action Points

Actions points allow you to specify an action to be performed when athread or
process reaches a source line or machine instruction in your program. TotalView
support the following types of action points:

Breakpoints

Breakpoints are the simplest type of action point. When athread or process
encounters a breakpoint during execution, it stops at the breakpoint along
with the other threads in the process. Y ou can also arrange for other related
processes to stop when the breakpoint is hit.

Process barrier breakpoints

Process barrier breakpointsare similar to simple breakpoints, but they useful
for synchronizing a group of processesin a multiprocess program. Process
barrier breakpoints work together with the Total View hold and release
process feature.

Evaluation points

Evaluation points allow you to specify acode fragment to be executed when
the thread or process reaches the evaluation point. Evaluation points can be
used in several different ways, including conditional breakpoints, thread -
specific breakpoints, countdown breakpoints, and patching code fragments
into and out of your program.

All of the different type of action points share some common properties:

188 TotaView User's Guide

Action points can be set at a source line or machine instruction.

Action points can be enabled or disabled independently, which alows you
to retain the action point definition, but remove it from your program.

Action points can be shared across multiple processes, or set in individual
processes.

Action pointsareapply totheprocess, soinamultithreaded process, it applies
to al of the threads.

Action points are assigned unique action point D numbers. They appear in
several places, including: the root window, the action points pane of the
process window, and the action points dialog box.



Action Points

Each type of action point hasits own symbol associated with it. Figure 72 shows
examples of STOP (breakpoint), BARR (process barrier breakpoint), and EVAL
(evaluation point) symbols, both enabled and disabled, and ASM (assembler-level
action point) symbol.

Assembler-level action point
Disabled breakpoint
Disabled barrier breakpoint
Disabled evaluation point

Breakpoint

Process barrier breakpoint

Evaluation point

Figure72. Action Point Symbols

TheASM symbol indicatesthat thereare one or moreassembl er-level action points
associated with the source line.

Thefollowing sections describe the different types of actions pointsin more detail.

TotalView User's Guide 189



CHAPTER 8: Setting Action Points

Setting
Sour ce-L evel
Breakpoints

Setting Breakpoints

The Tota View debugger offers several options for setting breakpoints. Y ou can
set source-level breakpoints, machine-level breakpoints, and breakpoints that are
sharedamongall processesinmultiprocessprograms. Y ou canalso control whether
or not TotalView stops all processesin the program group when a single member
reaches a breakpoint.

Note:  Breakpoints apply to the entire process, not just to asingle
thread. Any thread executing in the process could reach the
breakpoint, thus causing it to stop.

There are several ways to set source-level breskpointsin TotalView. Typically,
you set and clear breakpoints before you start a process. To set a source-level
breakpoint, select a boxed line number in the tag field of the process window. A
boxed line number indicatesthat the line generates executable code. A STOPsign,
shown in Figure 73, indicates that the breakpoint occurs before the source
statement is executed.

24

Breakpoint Gridget

Boxed number — 3R :::35

Selecting
Ambiguous
SourceLines

Figure73. Breakpoint Symbol

Y ou can al'so set abreakpoint while aprocessis running by selecting aboxed line
number in the tag field of the process window. If you set the breakpoint while the
processisrunning, TotalView stopstheprocesstemporarily toinsert thebreakpoint
and then continues running it.

If youareusing C++templates, itispossiblethat asinglesourceline could generate
multiple function instances. If you attempt to set a source-level breakpoint by
selecting aline number in afunction template, and that line number has more than
one instantiation, TotalView will prompt you with an ambiguous source line
selection dialog box, as shown in Figure 74.

190 TotaView User's Guide



File name and line number
Function selection checkboxes

Icon for existing action
point, or gray box if none

Function name

Setting Breakpoints

he source line you have specified iz ambiguous,
lease choose one or more of the containing functions in the selection pane.
I type in an unambiguous specification below,

11 action points will be in file "names.cxx" at line 324,

waplfloaté, floaté)
waptinté, int&

Select/deselect al
Function specification:
Function specification when ——— Beptintz i
only oneis selected
Select the action to be performed:
Actiontoperformonselected ———o Togsle. @ Erable O Dissble O Clear
functions

Figure 74. Ambiguous Source Line Selection Dialog Box
Perform the following steps to resolve the ambiguity.

1. Select the set of functionsto operate on by selecting:
» the All button to select all of the functions
» the None button to deselect all the functions
» individua checkboxes to select and deselect afunction

Note:  Thefunction specificationisautomatically settothecurrently
sel ected function when exactly onebox ischecked. Selecting
additional checkboxes clearsthisfield.

2. Select the action to perform on the set selected functions by selecting the:
» Toggleradio button to toggle the state of the action points

» Enableradio button to enable the action points, or create breakpoints
or process barrier breakpoints for any that did not already exist

» Disableradio button to disable the action point

TotalView User's Guide 191



CHAPTER 8: Setting Action Points

Diving into
Ambiguous
Source Lines

File name and line number
Function selection checkboxes

Icon for existing action
point, or gray box if none

Function name

» Clear radio button to delete default breakpoints or process barrier
breakpoints, and disable others

3. Selectthe OK button, or press Return to perform theaction. If you hold down
the Shift key, the action performed will be for process barrier breakpoints.

Similar to selecting an ambiguous sourceline, if you dive on an ambiguous source
line, TotalView displays the ambiguous source line dive dialog box, shown in
Figure 75, before posting the action point options dialog box.

The source line you have specified iz ambiguous,
Pleaze choose one or more of the containing functions in the selection pane,
ar type in an unambiguous specification below,

—
All action points will be in file "names,cxx" at line 324,

swapifloat, Floats)
swaplinté, intk)

Select/deselect all

Function specification when ——j— Buptlsatr, floates

only oneis selected

Function specification:

Figure75. Ambiguous Source Line Dive Dialog Box
Perform the following steps to resolve the ambiguity:

1. Select the set of functionsto operate on by selecting:
» theAll button to select al of the functions
» the None button to deselect all the functions

192 TotaView User's Guide



Setting Breakpoints

» individua checkboxes to select and deselect afunction

Note:  Thefunction specificationisautomatically settothecurrently
sel ected function when exactly onebox ischecked. Selecting
additional checkboxes clearsthisfield.

2. SelecttheOK button, or pressReturntodisplay theaction point optionsdia og
box. Any changes madein the action point optionsdialog box will be applied
to the selected functions.

As with other action point function menus, you are alowed to specify multiple

functions. However, if you do, the source linesthat are referenced must all contain
no action points, or contain action points of the same type. The reason for thisis
that once the action points are sel ected, a standard action point options dia og box
appears, and the sel ectionsyou makein thisdia og box apply to all theaction points

that you have selected.
T ogg| i ng Y ou can toggle a breakpoint at a specific function or source line number without
Break D oints at having tofirst find thefunction or sourcelinein the source pane. To set abreakpoint
thisway:

L ocations
1. Issuethe Breakpoint at Location (*B) command in the
STOP/BARR/EVAL/GIST submenu of the process window. The toggle
breakpoint dialog box appear as shown in Figure 76

Toggle breakpoint at location:

fEuapll

Figure76. Toggle Breakpoint at Location Dialog Box

2. Enter the name of the function or a source line number.

If you enter athe name of afunction, the breakpoint will be toggled at the
first executable sourcelineinthefunction you specified. If you enter asource
line number, the breakpoint will be toggled at the source linein the current

source file.

TotalView User's Guide 193



CHAPTER 8: Setting Action Points

3. Select the OK button, or press Return. If you hold down the Shift key, this
command will perform toggle a process barrier breakpoint at this location.

The behavior of the Breakpoint at L ocation (* B) command depends on whether
thereisalready an action point at the sel ected | ocation, and whether hold down the
Shift key when you select OK or press Return, as described in Table 13.

Table 13. Breakpoint at Location Actions

Location Content OK Action Shift-OK Action
Empty Create STOP Create BARR
STOP Delete/disable STOP  Convert to BARR
BARR Delete/disable BARR  Convert to STOP
EVAL Disable EVAL Disable EVAL

194 TotaView User's Guide



Setting Breakpoints

Togg| i ng If you give the Breakpoint at L ocation (*B) command an ambiguous function
. name, TotalView prompts you with an ambiguous function dialog box, as shown

Breakp0| ntsat inFigure 77.

Ambiguous

L ocations

The function name you have specified is ambiguous,
Pleaze choose one or more of the functions in the selection pane,

Func‘“on SeleCtIOH Checkboxes — .nLIthe in an unambiguous specification below,

swap(floatk, floatd) {r -
e , o 323

i swaplintd, intd)
hames, cxx 323

Icon for existing action
point, or gray box if none

Functionname, filename,
and line number

Select/deselect ll

Function specification:
Function specification when - T
only oneis selected

Select the action to be performed;

ACtIOhtO perform On%lected —1r ® Togsle > Enable ) Disable 3 Clear
functions

Figure77. Ambiguous Function Name Dialog Box
Perform the following steps to resolve the ambiguity:

1. Select the set of functionsto operate on by selecting:
» theAll button to select all of the functions
» the None button to deselect all the functions

* individual checkboxes to select and deselect afunction

Note:  Thefunctionspecificationisautomatically settothecurrently
selected function when exactly one box ischecked. Selecting
additional checkboxes clearsthisfield.

TotalView User's Guide 195



CHAPTER 8: Setting Action Points

2. Select the action to perform on the set selected functions by selecting the:
» Toggleradio button to toggle the state of the action points

» Enableradio button to enable the action points, or create breakpoints
or process barrier breakpoints for any that did not already exist

» Disableradio button to disable the action point

» Clear radio button to delete default breakpoints or process barrier
breakpoints, and disable others

3. Select the OK button, or press Return. If you hold down the Shift key, the
action performed will be for process barrier breakpoints.

Setti ng To set amachine-level breakpoint, you must first display assembler code or source
: interleaved with assembler. (Refer to “ Examining Source and Assembler Code’

Machi ne_-L evel on page 120 for information.)

Breakpoints
Then you select the tag field that is opposite the appropriate instruction. The tag
field must contain agridget, which indicatesthe lineisthe beginning of amachine
instruction. Since the instruction sets on some platforms support variable-length
instructions, you may see multiple lines associated with asingle gridget. The stop
sign appears, indicating that the breakpoint occurs before the instruction is
executed.

Note:  When the source pane displays source interleaved with
assembler, source statements are treated as comments. You
can set breakpoints on instructions, not source statements. If
you set a breakpoint on the first instruction after a source
statement, however, you actually create a source-level
breakpoint.

If you set machine-level breakpoints on one or more
instructions that are part of a single source line and then
display source code in the source pane, TotalView displays
an ASM sign (see Figure 72) on the line number. To seethe
specific breakpoints, you must display assembler or
assembler interleaved with source code.

196 TotaView User's Guide



Thread-Specific
Breakpoints

Breakpointsfor
Multiple
Processes

Setting Breakpoints

After you set al desired breakpoints, you can start the process. When a process
reaches a breakpoint, TotalView does the following:

» Suspends the process

» Displaysthe PC symbol over the stop sign to indicate the PC currently points
to the breakpoint

» Displays*“at breakpoint” in thetitle bar of the process window and other
windows

» Updates the stack trace panes, stack frame panes, and variable windows.

TotalView implements thread-specific breakpoints through evaluation pointsin
the Total View expression system. The expression system has several intrinsic
variablesthat allow athread to retrieve its thread ID. For example, the following
shows how to set a breakpoint that stops the process only when thread 3 executes
the evaluation point:

/* Stop when thread 3 evaluates this expression. */
if ($tid == 3) $stop;

In multiprocess programs, you can set breakpointsin the parent process and child
processes before you start the program and at any time during its execution. To do
this, you usethe action point optionsdial og box, asshowninFigure 78. Thisdialog
box provides three checkboxes for process groups:

» Stop All Related Processes when Breakpoint Reached
If selected, stops all members of the program group when the breakpoint is
reached. Otherwise, only the process that reaches the breakpoint stops.

» Stop All Related Processes when Barrier Breakpoint Hit

If selected, stops all members of the program group when the barrier
breakpoint is reached. Otherwise, only the process that reaches the barrier
breakpoint stops.

e Share Action Point in All Related Processes

If selected, enables and disables the breakpoint in all members of the share
group at the same time. Otherwise, you enable and disable the breakpoint in
each share group member individually.

TotalView User's Guide 197



CHAPTER 8: Setting Action Points

Y ou can control the default setting of these checkboxes using X resources or
command line options. See Figure 78.

Stops members of Breakpoint
B4 Stop ALl Related Processes when Breakpoint Hit
program group

rocess Barrier Breakpoint
B4 Stop All Related Processes when Barrier Breakpoint Hit

valuate Exprezszion

= = &=

og Gist Event Event Mame:
Yariable to Track:
Format String:

B Action Point Enabled
= [ Share Action Point in All Related Processes

E 0K ] E Clear ] E Abort ] E Delete ]

Action Point 13 line 335 in maint(x174 file "twxsort,c"

Action point ID '

Set breakpoint in
members of share group

Figure78. Action Point Options Dialog Box

Refer to “totalview* stopAllRel atedProcessesWhenBreakpointHit: {true | false}”
on page 280,

“total view* processBarrierStopAllRel atedProcessesWhenBreakpointHit: {true |
false}” on page 276, and “total view* shareA ctionPointl nAllRel atedProcesses:
{true | false}” on page 278 and “ Total View Command Syntax” on page 287.

In addition to the controls in the action point options dialog, you can write an
expressionintheexpression box to control thebehavior of program group members
and share group members. Refer to “Writing Code Fragments” on page 218 for
more information.

198 TotaView User's Guide



Breakpoint for
Programsthat
fork()/execve()

ProcessesThat Call
fork()

Pr ocessesThat Call
execve()

Setting Breakpoints

Y ou must link with the dbfork library to debug programs that call fork() and
execve(). See “Compiling Programs’ on page 16.

By default, breakpoints are shared by all processes in the share group, and when
any process reaches the breakpoint, Total View stopsall processesin the program

group.

To override these defaults:

1
2.

Diveinto the tag field to display the action point options dialog box.

Deselect these checkboxes: Stop All Related Processes when Breakpoint
Hit and Share Action Paint in All Related Processes.

Select the OK button.

Breakpointsthat are shared by a parent and children with the same executable do
not apply to children with different executables. To set the breakpointsfor children
that call execve():

1.

Set the breakpoints and breakpoint options desired in the parent and the
children that do not call execve().

Start the multiprocess program by displaying the Go/Halt/Step/Next/Hold
submenu and selecting the Go Group (G) command. When the first child
calls execve(), adialog box appears with the following message:

Process nanme has call ed exec (nane),
Do you wish to stop it before it enters MAIN?

Answer Yes. TotalView opens a process window for the process. (If you
answer No, the program executes without allowing you to set breakpoints.)

Set the breakpoints desired for the process. Once you set the breakpointsfor
the first child that uses this executable, the debugger does not prompt you
when other children call execve() to use this executable. Therefore, if you
don’t want to share the breakpoints among other children using the same
executable, dive into the breakpoints, and set the breakpoint options

appropriately.

Selectthe Go Group (G) command fromthe Go/Halt/Step/Next/Hold menu
to resume execution.

TotalView User's Guide 199



CHAPTER 8: Setting Action Points

Example: The following example program illustrates the different points at which you can
M ulti process set breakpoints in multiprocess programs:
Breakpoint pid = fork():

if (pid == -1)

error ("fork failed");
else if (pid == 0)
children_play();
el se

NOoO oA~ WN P

parents_work();

Table 14 showstheresults of setting abreakpoint on different lines of the example.

Table 14. Setting Breakpoints in Multiprocess Programs

Line Number Result

1 Stops the parent process before it forks.

2 Stops both the parent and child processes (if
the child process was successfully created).

3 Stops the parent processiif fork() failed.

5 Stops the child process.

7 Stops the parent process.

200 TotaView User's Guide



Process Barrier Breakpoints

ProcessBarrier
Breakpoint
States

SettingaProcess
Barrier
Breakpoint

Process Barrier Breakpoints

A process barrier breakpoint (process barrier point) isajust likeasimple
breakpoint, but it holds processes that reach the process barrier point. TotalView
holdseach processuntil al the processesinthegroup reach the sameprocessbarrier
point. When the last process reaches the same barrier point, all processesin the
group are released.

Processes at a process barrier point are held or stopped, as follows:

» Held. A processthat is held cannot resume execution until all the processes
initsgroup are at the process barrier point, or until you manually releaseiit.
When held, the various “Go” and “ Single-step” commands from the
Go/Halt/Stop/Next/Hold menu have no effect on held process.

* Stopped. When al the processesin the group reach the process barrier point,
TotalView automatically releases them. They remain stopped at the barrier
point until you take action on them.

Y ou can manually release held processes by choosing Hold/Release Process (w)
or Release Group command from the Go/Halt/Stop/Next/Hold menu. Whenyou
manually release a process, the “Go” and “ Single-step” commands become
available again. Y ou can use the Hold/Release Process (w) command again to
toggle the hold state of the process. See “Holding and Releasing Processes’ on
page 128 for more information.

Y ou can set a process barrier breakpoint with the mouse or from the action points
dialog box.

» To set aprocess barrier breakpoint with the mouse, move the mouse to the
line number in the process window where you want to set the process barrier
point. Then press Shift-Select. A BARR sign appears. See Figure 72 on page
189.

» Tosetaprocess barrier breakpoint from the action point options dialog box,
dive on the line where you want to set the process barrier point. In the action
points options dialog box, click on the BARR sign, then click on OK. See
Figure 79.

TotalView User's Guide 201



CHAPTER 8: Setting Action Points

Process barrier
breakpoint

Controlswhether related
processes stop when hit

Process barrier
breakpoints must be
shared

reakpoint
Stop ALl Related Proceszes when Breakpoint Hit

= Frocess Barrier Breakpoint
Bd Stop A1l Related Processes when Barrier Breakpoint Hit

! fvaluate Expression

= (EEn

og Gist Ewent Event Mame:
Yariable to Tracky
Format String:

B Action Point Enabled
=P Share Action Point in A1l Related Processes

E 0K ] E Clear ] E Abort ] Eﬂeleta ]

Action Point 8¢ line 180 in snoret+0x110 file "fork_loop.coxx”

Figure79. Action Point Options Dialog Box

When you set a process barrier point, TotalView placesit in all the processesin
the group. TotalView insists that you create barrier breakpoints that are active in
the entire share group.

If you run one of the processes in the group and it hits the process barrier point,
youwill seean H next to the processnamein theroot window and theword [Held]
in the processtitle bar in the main process window. Process barrier points are
always shared. See Figure 80.

202 TotaView User's Guide



Action point ID

Process 19364; fork_loop

[Hel

| v

Process Barrier Breakpoints

(I Thread 19354,1; fork_loop

@@— Held in process
window title bar

[ERRTTARRR R EREROROLARRRAN] Stack Frame IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII Stack Trace IIIINNAINNIHN00

K%

Wiy
To:

"wait_a_while"?:

1 Lt Furction
FP=11fffefco) timeout:
[C++] For“ker', FP=11fFFFO00  |Local variables:
[C++] main, FP=11f {40 countdown TOk:
__start, FP=11ffff1b) result {503%

0:11FFFeffa -> Ox0007a12000
Ox1fFFeffd (3366308

000000001 {13

Registers for the frame:

0:3FFcO0BeBf0 (4396973302688

0:11FFFeffe (48318341043

i

]

Hold symbol (H) in
root window

IHHHHHHHHHHHHHHHHH“““HIFunctlon wait_a_whileltimeval®d in Fork_loop.,cooc IR0,

while {countdown——3
zhared_countup ++:

T

109 else
110 1

int result:

timeout,tv_sec = zleep_time:

timeout . tyv_usec = sleep_time_usec:

WIELDC )

ertho = 0

result = select (0, 0, 0O,

if {result Il errnod
printf {("thread #ld:

JEELY

0, Bhimeout?:

select{d=¥d, errno=Zdwn",

SRR NN Alpha T

tal¥icw 3X.8.0 S SO SR NE

~

IV

19364 E10 H fork_loop {6 threads} j;t
in wait_a_uhile(timevali)
T in meg_receive_trap
T in hstRestoreRegisters
T in thdBase
T in thdBase

in thdBase
fork_loop,1 (B threads)
fork_loop,1,1 (6 threads?

19503 B10 fork_loop,2 (B threads)

Action point ID

longtpthread_selfiy, intiresult), intlerrnodds
¥
IPTH ¥ % wait_a_while #/
122
123 | /4
124
125 | static int snore_entry = 13
126
Threads (6} Action Points
) n wait_a_whilel 1 line 300 in main+(x274
mor[-11 T in meg_receive_trap 2 line 303 in main+(x238
mgr[-21 T in hstRestoreRegizters 3 line 303 in maint(x28c
mgr[-31 T in thdBase 4 line 303 in main+0x290
mg[-41 T in thdBaze 5 line 304 in main+(x233
Figure80. ProcessBarrier Breakpoint in Process and Root Windows
Reeasi ng TotalView automatically releases processes from a process barrier point in the
following situations:
Processes from J
ProcessBarrier .

Points

A process hitsthat process barrier point after all other processesin the group
are dready held at it

TotalView User's Guide 203



CHAPTER 8: Setting Action Points

Toggling
Between a
Breakpoint and
a Process
Barrier Point

Deleting a
ProcessBarrier
Point

Changes when
Setting and
Clearing a
Barrier Point

* You can create a new process barrier point, and every process in the group
is already stopped at the location of the new barrier. Normally, when you
create a new process barrier point TotalView holds any process which is
stopped at the barrier’ s location. However, rather than holding all the
processes in this case, TotalView leavesthem all not held.

Y ou can convert an ordinary breakpoint to a process barrier point by moving the
cursor to the breakpoint and clicking Shift-Select. To convert a process barrier
point back to an ordinary breakpoint, move the cursor to the process barrier
breakpoint and use Shift-Select.

Plain select clears barrier points, just asit clears breakpoints.

Note:  Shift-Select on an Eval point doesnot convert it to aprocess
barrier point.

Y ou can delete a process barrier point from the action points dialog box or from
the process window.

» If the process barrier point was created with default settings, simply select
the BARR symbol in the source pane of the process window to delete it.
Otherwise, if some options have been set to non-default values, when you
select it Total View just disablesit. If you want to re-enable it with the same
options you had previoudly, select it again.

» Todeleteaprocessbarrier point, or other action point, which has non-default
options, dive on the action point symbol in the source pane of the process
window todisplay theaction pointsdial og box. Inthedial og box, click Delete.

Setting a process barrier point at the current PC for a stopped process holds the
process there, unless all other processesin its group are at that same PC. If they
are, TotalView does not hold them. They are the same asif they were stopped at
an ordinary breakpoint.

All processes which are held and which have threads at the process barrier point
are released when you clear the barrier point. They remain stopped, but are no
longer held. Y ou can clear the barrier breakpoint in the action point optionsdial og
box by clicking on Clear at the bottom of the action points dialog box.

204 TotaView User's Guide



Defining Evaluation Points

Defining Evaluation Points

Y ou can define evaluation points, pointsin your program where TotalView
evaluates a code fragment. The fragment can include special commands to stop a
process and its relatives. Thus, you can use evaluation points to set conditional
breakpoints of varying complexity. Y ou can also use evaluation points to test
potential fixesfor your program.

Note:  Werecommend that you stop a process before setting an
evaluation point. Thisensuresthat the evaluation point is set
in a stable context in the program.

Y ou can define an evaluation point at any source line that generates executable
code (marked with boxed line number in the tag field). If you display assembler
or source interleaved with assembler in the process window, you can aso define
evaluation points on machine-level instructions.

As part of defining an evaluation point, you provide the code fragment to be
evaluated. Y ou can write the code fragment in C, Fortran, or Assembler.

Note:  Assembler support is currently available only on the Alpha
Digital UNIX and AlX operating systems. Compiled
expressions must be enabled to use assembler constructs.

At each evaluation point, the code fragment in the evaluation point is executed
before the code on that line. Typically, the program then executes the program
instruction at which the evaluation point is set. But your code fragment can modify
this behavior:

» It caninclude a branching instruction (such as GOTO in C or Fortran). The
instruction can transfer control to a different point in the target program,
enabling you to code and test program patches.

» Itcancontainabuilt-in statement. Thesespecial Total View statementsdefine
breakpoints, process barrier points, and countdown breakpoints within the
codefragment. By including them within other statementsthat you code, you
can define conditional breakpoints. For more information on these
statements, refer to Table 17, “Built-In Statements That Can Be Used in
Expressions,” on page 219.

TotalView User's Guide 205



CHAPTER 8: Setting Action Points

TotalView evaluates code fragmentsin the context of the target program. This
means that you can refer to program variables and pass control to pointsin the
target program.

Note:  For complete information on what you can include in code

fragments, refer to “Writing Code Fragments’ on page 218.

Evaluation points modify only the processes that you are
debugging. They do not permanently modify the source
program or create apermanent patch inthe executable. If you
savetheevaluation pointsfor aprogram, however, Total View
reapplies them whenever you start a debugging session for
that program. To saveyour eval uation points, refer to“ Saving
Action Pointsin aFile” on page 215.

Setting To set an evaluation point:

Evaluation
Points

1.

206 TotaView User's Guide

Dive into the tag field for an instruction in the process window. Total View
displays the action point options dialog box.

Select the EVAL (Evaluate Expression) button.

Select the button (if it’s not already selected) for the language in which you
will code the fragment.

Select the evaluation text box and enter the code fragment to be evaluated.
Usethefield editor commands as required. For information on supported C,
Fortran, and Assembler language constructs, refer to “Writing Code
Fragments’ on page 218.

For multiprocess programs, decide whether to share the evaluation point
among all processesin the program’s share group. By default, the Share
Action Pointin All Related Pr ocessesissel ected for multiprocessprograms,
but you can override this by deselecting the checkbox.

Select the OK button to confirm your changes. If the code fragment has an
error, Total View displaysan error message. Otherwise, Total View processes
the code, closes the dialog box, and places an EVAL icon in the tag field.



Defining Evaluation Points

Setti ng Tosetaconditional breakpoint, completesteps1to4 of “ Setting Evaluation Points”
Conditional on page 206. Here are some examples of conditional breakpoints and the code

. fragments that you would need to supply in step 4:
Breakpoints

» Todefine abreakpoint that is reached whenever avariablei is greater than
20 but less than 25:

if (i >20&& i<25)
$stop;
» Todefineabreakpoint that is reached every 10th time the $count statement
is executed:

$count 10

» To define a breakpoint with a more complex expression, consider this one:
$count i * 2

When the variable i equals 4, the process stops the 8th time it executes the

$count statement. After the process stops, the expression isreevaluated. If i

now equals 5, the next stop occurs after the process executes the $count
statement 10 more times.

Then, complete steps 5 and 6 of “ Setting Evaluation Points’ on page 206.
For complete descriptions of the $stop and $count statements, refer to “Built-In

Statements” on page 219.

Patchin g Y ou can use expressionsin eval uation pointsto patch your code. Specifically, you
Prodrams can use the goto (C) and GOTO (Fortran) statements to jump to another point in
g your program'’s execution.

Y ou can patch programs in two ways:

* You can patch out pieces of code so they are not executed by the program.
* You can patch in new pieces of code to be executed by the program.

In many cases, you correct an error in aprogram, so you need to use both types of
patching. Y ou patch out the incorrect lines of code and patch in the corrections.

TotalView User's Guide 207



CHAPTER 8: Setting Action Points

Conditionally
Patching Out Code

PatchingIn a
Function Call

Correcting Code

For example, suppose a section of your C program dereferences a null pointer:

1 int check_for_error (int *error_ptr)
2 {

3 *error_ptr = global _error;

4 gl obal _error = 0;

5 return (global _error !'= 0);

6 }

In this example, the caller of the check_for_error function assumes that passing
0 asthevalue of error_ptr is allowed. The code should allow null values of
error_ptr, but line 3 dereferences anull pointer.

To correct this error, you can patch in code that checks for a null pointer. To do
S0, you set an evaluation point on line 3 and specify the following code fragment
in the evaluation point:

if (error_ptr == 0) goto 4,

If thevalue of error_ptr isnull, line 3 is not executed.

Asan dternative, you can patch in aprintf statement that displays the value of
global_error. To do so, you create an evaluation point on line 4 and specify the
following code fragment:

printf ("global _error is %\n", global_error);

Inthis case, the code fragment is executed before the code online4, that is, before
global_error isset to 0.

In thisfinal example, thereis a coding error—the maximum value is returned
instead of the minimum value:

nt mnimum (int a, int b)

~— =

int result; /* Return the mninum */
if (a <b)
result = b;
el se
result = a;
return (result);

O©CoOoO~NOOOTA, WNPE

—

208 TotaView User's Guide



Interpreted vs.

Compiled
Expressions

Interpreted
expressions

Compiled
expressions

Defining Evaluation Points

To correct this error, you can set an evaluation point on line 4 and specify the
following code fragment to correct the program’s if statement.

if (a <b) goto 7; else goto 5;

On most platforms, TotalView executes interpreted expressions. TotalView can
also execute compiled expressionsonthe AlphaDigital UNIX and Al X platforms.
On these platforms, compiled expressions are enabled by default.

Y ou can enable or disable compiled expressions using Xresources or command-
line options. Refer to “total view* compileExpressions: { true | false} ” on page 267.
See Appendix B, “Operating Systems,” on page 321 to find out how TotalView
handles expressions on specific platforms.

» TotalView setsabreakpoint in your code and executes the evaluation point.
Since Total View is executing the expression, interpreted expressions run
slower than compiled expressions. With multiprocess programs, interpreted
expressions can run more slowly because processes may be waiting serially
for the debugger to execute the expression. With remote debugging,
interpreted expressions can run more slowly because the debugger, not the
debugger server (tvdsvr), is executing the expression.

» If the expression contains $stop or $count, Tota View terminates the
evaluation of the expression and stops the process. Thus, if you use $stop or
$count, they should beat theend of your expression because Total View stops
evaluating the expression at that point.

» TotalView compiles, linksand patchesthe expressioninto thetarget process.
To do this, TotalView replaces an instruction with a branch instruction,
relocatesthe original instruction, and appends the expression. Then the code
isexecuted by thetarget process, so conditional breakpointscan executevery
fast.

* If theexpression contains $stop or $count, TotalView stopsthe execution of
the processin the compiled expression, so you can single step through it and
continue executing the expression as you would the rest of your code. See
Figure 81.

TotalView User's Guide 209



CHAPTER 8: Setting Action Points

Process 5303 fork_loop Ay e
L Thread 5830,1: fork_lLoop AT

TR0 Stack Trace N0 (WO stack. Frane TR0
£t

Function "eval$2":
FP=11ffF No parameters.
FP=11ffF1b0)

Registers for the frans:

V01 0x00000001 {1}
TO: Ox11fFFFO40 (48318341760
T1: 0x11fFFechO (48318337762
T27 000000001 (1)
T3z 000000001 (1)

[ =
) Function svals2 in eval$2 NI
£t

1| if {threads_per_copy == 1} i
= $stop:

&
Threads (32 Action Points
1 1 line 303 in naim0x288 3
ngrl-1] in msg_receive_trap 2 line 303 in maim0x28c |:|
mgr[-21 T in thdBase 3 line 303 in main+0x230
8 line 307 in main+0x29c E
[ 4 line 135 in snore+0xE0 (s

Figure8l. Stopped Execution of Compiled Expression

Defining and Using Event Points

TotalView does not currently support placing event pointsin your program.

210 TotaView User's Guide



Controlling Action Points

Displaying the
Action Points
Window

Action point ID

Controlling Action Points

TotalView provides three methods of controlling action points: the action points
window, the action points panein the process window and the action point options
diaog box.

The action points window displays a summary of the action points that are set in
your program. To display this window, display the STOP/BARR/EVAL/GIST
submenu and select the Open Action Points Window (b) command. The action
points window appears, as shown in Figure 82.

Action Points in fork_loop €03
Type of line 247 in forker+0x170 file "fork_loop,cxx"  [L]
. . line 135 in snore+(xEd file "fork_loop,cux”
action p0| nt line 144 in snore+(xal file "Fork_loop,cox"
line 150 in znore+xll0 file "fork_loop,cxx"
) line 151 in snore+0x124 file "fork_loop,cxs"
Line number ]
Routine name N
-
Source

Figure82. Action Points Window

Note:  Thelistof action pointsdisplayedintheaction pointswindow
isthe same as shown in the action points pane in the process
window.

If you diveinto an action point in the action point list, Total View displaystheline
of source code containing the action point in the source code pane of the process
window.

Tip: Action points make it easier to navigate your source files.
Y ou can define disabled breakpointsin your code and dive
into the breakpoint to quickly display the corresponding
sourcecodeinthe processwindow. Thus, breakpoints can act
like bookmarksin your program.

TotalView User's Guide 211



CHAPTER 8: Setting Action Points

Di Sp| ayi ng the Theaction point options dial og box |etsyou set and control an action point in your
Action Point program. To display thisdialog box, diveinto the tag field beside asource line or
an instruction. TotalView displays the dialog box, illustrated in Figure 83.

Breakpoint
B Stop ALl Related Processes when Breakpoint Hit
rocess Barrier Breakpoint
[0 Stop All Related Processes when Barrier Breakpoint Hit
valuate Expression
Deletes action
point
=
Cancels changes — .
og Gist Ewent Event Mame:
Yariable to Track:
Re\/erts to Format String:
defal'llt setti ngs B Action Point Enabled
. Bd Share Action Point in All|Related Processes
Applies
Changes - | T K ] E Clear ] E Abort ] E Delete ]
Action Point 1: line 135 in snore+0xB0  file "fork_loop,cux”

Action paint ID g

Figure83. Action Point Options Dialog Box

Commandsfor  You cantake thefollowing actions to control the use of action pointsin your

Controlling program:
Action Points Delete Permanently removes the action point.
Disable Keeps the definition for the action point but ignoresit
during execution.
Enable Makes the action point active during execution.

212 TotaView User's Guide



Controlling Action Points

Suppress Keeps the definition for the action point, ignores it
during execution, and prevents creation of additional
action points.

Unsuppress Makes the action point active during execution and

allows creation of additional action points.

Table 15 showshow to control action pointswith the process window, action point
options dialog, and the action points window.

Table 15. Clearing, Disabling, Enabling, Suppressing, and Unsuppressing Action Points

Breakpointsand Process

Action Barrier Breakpoints Evaluation Point Event Point
Deleting SelecttheSTOPor BARRsign  Select the Delete buttoninthe  Note: Event points
in the tag field. action point options dialog. are not currently
Or supported.
Select the Delete button in the
action point options dialog.
To clear all breakpoints, process barrier points, and evaluation
points, go to the processwindow or action pointswindow, display
the STOP/BARR/EVAL/GI ST submenu, and select the Clear
All STOP, BARR, & EVAL command.
Disabling1 Deselect Action Point Selectthe EVAL signinthetag
Enabled in the action point field.
options diaog. Or
Or Deselect Action Point
SelecttheSTOPor BARRsign  Enabled in the action point
in the action points window. options dialog.
Or
Select the EVAL signinthe
action points window.
Enabling Select thedimmed STOP, BARR or EVAL signinthe process or

action points window.
Or
Select Action Point Enabled in the action point options dialog.

TotalView User's Guide 213



CHAPTER 8: Setting Action Points

Table 15. Clearing, Disabling, Enabling, Suppressing, and Unsuppressing Action Points (Continued)

Breakpointsand Process
Action Barrier Breakpoints Evaluation Point Event Point

Suppressi ng? To suppress all action points, display the
STOP/BARR/EVAL/GIST submenu and select the Suppress
All Action Points (*D) command.

Unsuppressing  To unsuppress al action points, display the
STOP/BARR/EVAL/GI ST submenu and select the Unsuppr ess
All Action Points (*E) command.

1. Disabling an action point does not clear it. Total View remembers that an action point exists for the line, but
ignoresit aslong asit is disabled. For eval uation points, Total View keepsthe definition in case you want to use
it again later.

2. When you suppress action points, you disable them. In addition, you cannot update any existing action points
or create new ones.

214 TotaView User's Guide



Saving Action Pointsin aFile

Saving Action Pointsin a File

Y ou can save the action points for each program you debug in afile. By doing so,
youwill not haveto set action pointseach timeyou start anew Total View session.
When you save action points, TotalView names the file
program.TVD.breakpoints, where programis the name of your program.

Tip: To save action points, display the STOP/BARR/EVAL/GI ST submenu
and select the Save All Action Points command from the process
window. The debugger placesthe action pointsfilein the same directory
asyour program.

If you know that you always want to save your action points before you
exit from TotalView, you can set an X Window System resource to do
this. Refer to “total view* autoSaveBreakpoints: {true | false}” on

page 265. Alternatively, you can use the —sb option each time you start
the debugger, as described in “ TotalView Command Syntax” on

page 287.

Once you create an action pointsfile, TotalView automatically loadsthe file each

time you invoke the debugger. TotalView usesthe same search paths asit doesto

locate sourcefiles. If you prefer to suppressthisbehavior, you can set an X resource

(see“totalview* autoL oadBreakpoints: { true | false} " on page 265) or usethe-nlb

option each time you start the debugger (see “ Total View Command Syntax” on

page 287).

Evaluating Expressions

In the Total View debugger, you can open awindow for evaluating expressionsin
the context of a particular process and evaluate expressionsin C, Fortran, or
Assembler.

Note:  Not al platforms support the use of Assembler constructs;
see Appendix C, “ Architectures,” on page 333 for details.

TotalView User's Guide 215



CHAPTER 8: Setting Action Points

To evaluate an expression:

1. Make surethat aprocessis created, running, or stopped in the process
window.

2. Select the Open Expression Window (€) command from the process
window. An expression evaluation window appears.

3. Select the button (if it isnot already selected) for the language in which you
will write the code.

4. Select the Expression box and enter the code fragmentsto be evaluated using
the field editor commands. For a description of the supported language
constructs, see “Writing Code Fragments’ on page 218.

The last statement in the code fragment can be a free-standing expression;
you don't haveto assigntheexpression’ sreturnvaluetoavariable. Figure 84
shows a sampl e expression.

Expreszion Window for "filter" {0}
Expreszion
Etatic int sum = 0f
int i:
[For (i =0 i <10
UM += i
kumzll
T all
Result value —value: |
Language =

Figure84. Sample Expression Window

5. Select the Eval button. If TotalView findsan error, it positionsthe cursor on
the incorrect line and displays an error message. Otherwise, it interprets (or
on some platforms, compiles and executes) the code, and displaysthe value
of the last expression in the Expression box in the Value field.

216 TotaView User's Guide



Evaluating Expressions

While the code is being executed, you can’t modify anything in the window
becauseit is suspended. If execution takesalongtime, noticethat Total View
displays diagonal lines across the window, indicating that the window is
temporarily inaccessible.

Since code fragments are evaluated in the context of the target process, the
stack variables are evaluated according to the currently sel ected stack frame.
If the fragment reaches a breakpoint (or stops for any other reason), the
expression window remainssuspended. A ssignment statementscan affect the
target process because they can change the value of avariablein the target
process.

Y ou can use the expression window in many different ways, but here are two
examples:

Expressions can contain loops, so you could useafor |oop to search an array
of structuresfor the entry containing a particular field set to a certain value.
In this case, you use the loop index at which the value is found as the last
expression in the expression evaluation window.

Y ou can call subroutines from the expression window, so you could test and
debug a single routine in your program without building a test program to
call the routine.

Once you have selected and edited an expression in the window, you cannot use a
keyboard equivalent (q) to exit from the window because the field editor is still
active. To exit, display the menu and select the Close Window command or press
Shift-Return.

TotalView User's Guide 217



CHAPTER 8: Setting Action Points

Writing Code Fragments

Y ou can use code fragmentsin evaluation points and in the expression evaluation
window. This section describes the intrinsic variables, built-in statements and
language constructs supported by TotalView.

ins The TotalView expression system supports built-in variables that allow you to
ntrinsic
Variables access special thread and process values. All of the variables are of type 32-bit

integer, which istype <int> or <long> on most platforms. The variables are not
Ivalues, so you cannot assign to them or take their addresses. Table 16 lists the
intrinsic variable names and their meanings.

Table16. Intrinsic Variables

Name Meaning

$tid Returns the Total View-assigned thread 1D.
When referenced from a process, generates an
error.

Psystid Returns the system-assigned thread ID. When
referenced from a process, generates an error.

$pid Returns the process ID.

$nid Returns the node ID.

$clid Returns the cluster ID.

$duid Returns the Total View-assigned Debugger

Unique ID (DUID).

$processduid Returns the DUID of the process.

Note:  $nid, $clid, $duid, and $processduid are implemented for
interpreted expressions only.

Intrinsic variables alow you to create thread specific breakpoints from the
expression system. For example, using the $tid intrinsic variable and the $stop
built-in operation, you can create a thread specific breakpoint as follows:

218 TotaView User's Guide



Writing Code Fragments

if ($tid == 3)
$st op;

Thiswould cause Total View to stop the process only if thread 3 evaluated the
expression. Y ou can also create complex expressions using intrinsic variables:

if ($pid!= 34 && $tid > 7)
printf (“Hello from%. %\ n", $pid, $tid);

it- TotalView providesaset of built-in statementsthat you can usewhen writing code
ullt-In
Statements fragments. Thestatementsareavailableinall languages, and areshownin Table 17.

Table17. Built-In Statements That Can Be Used in Expressions

Statement Use

$stopthread Sets athread-level breakpoint. The thread that executesthis
statement stops, but all other threadsin the process continue
toexecute. If thetarget system doesnot support asynchronous
stop, this executes as a $stopprocess.

$stop Sets a process-level breakpoint. The process that executes
$stopprocess thisstatement stops, but other processesin the program group
continue to execute.

$stopall Sets a program-group-level breakpoint. All processesin the
program group stop when any thread or processin the group
executes this statement.

$countthread expression Setsathread-level countdown breakpoint. When any thread
in a process executes this statement for the number of times
specified by expression?, it stops. The other threadsiin the
process continue to execute. If the target system does not
support asynchronous stop, thisexecutes asa$countpr ocess.

$count expression Setsaprocess-level countdown breakpoint. When any thread
$countprocess expression in a process executes this statement for the number of times

specified by expression, the process stops. The other
processes in the program group continue to execute.

TotalView User's Guide 219



CHAPTER 8: Setting Action Points

Table17. Built-In Statements That Can Be Used in Expressions (Continued)

Statement

Use

$countall expression

$hold
$holdprocess

$holdstopall
$holdprocessstopall

$holdthread
$holdthreadstop
$holdthreadstopprocess
$holdthreadstopall

$visualize(expression[,dlice])

Sets a program-group-level countdown breakpoint. All
processesin the program group stop when any processin the
group executes this statement for the number of times
specified by expression.

Holdsthe current process. If al other processesin the group
arealready held in breakpoint state at thiseval point, then all
will be released. If other processesin the group are running,
they continueto run.

Exactly like $hold, except any processesin the group which
arerunning are stopped. Note that the other processesin the
group are not automatically held by this call -- they are just
stopped.

Freezesthe current thread |eaving other threads running. See
(later sections) for more information on threads.

Exactly like $holdthread except it stops the process. The
other processes in the group are left running.

Exactly like$holdthreadstop except it stopstheentiregroup.

Visualizes the data specified by expression and modified by
the optional slice. Expression and slice must bewritteninthe
syntax of the code fragment’ s language. The expression can
be any valid expression that yields a data-set (after
modification by slice) that can be visualized. The sliceisa
guoted string containing a slice expression. For more
information on how to use $visualize in an expression, see
“Visualizing Datain Expressions’ on page 239.

1. A thread evaluates expression when it executes the $count statement for thefirst time, and it must
evaluateto apositiveinteger. A thread reevaluates $count only when it resultsin abreakpoint. Then,
theprocess’ internal counter for the breakpoint isreset to the value of expression. Theinterna counter
isstored in the process and shared by al threadsin that process.

220 TotaView User's Guide



C Constructs
Supported

Syntax

Data Typesand
Declarations

Statements

Writing Code Fragments

When writing code fragments in C, keep these guidelines in mind.

C-style(/* comment */) and C++-style(// comment) commentsare permitted.
For example:

/1 This code fragnent creates a tenporary patch
i =i+ 2 /* Add two to i */
Semicolons can be omitted when no ambiguity would result.

Dollar signs (%) in identifiers are permitted.

Data types permitted: char, short, int, float, double, and pointers to any
primitive type or any named type in the target program.

Only simple declarations are permitted. The struct, union, and array
declarations are not permitted.

Referencesto variables of any type in the target program are permitted.

Unmodified variable declarations are considered local. References to them
override references to similarly named global variables and other variables
in the target program.

(Compiled evaluation points only) The global declaration makes avariable
available to other evaluation points and expression windows in the target
process.

(Compiled evaluation pointsonly) Theexter n declarationreferencesaglobal
variable that was or will be defined el sewhere. If the global variable has not
yet been defined, Total View displays awarning.

Static variablesarelocal and persist even after an evaluation point has been
evaluated.

For static and global variables, expressions that initialize data as part of the
variable declaration are performed only the first time the code fragment is
evaluated. Local variables are initialized each time the code fragment is
evaluated.

Permitted statements. assignment, break, continue, if/else structures, for,
goto, and while.

TotalView User's Guide 221



CHAPTER 8: Setting Action Points

With the goto statement, you can defineand branch to symbolic labels. These
labelsare considered local to thewindow. Asan extension, you can also refer
toalinenumber inthetarget program. Thisline number referstothetag field
number of the source code line. Here’' s a goto statement that causes the
program to branch to source line number 432 of the target program:

goto 432;
Function calls are permitted, but structures cannot be passed to a function.
Type casting is permitted.
All operators are permitted, with these limitations:
» The conditional operator ?: is not supported.
» The sizeof operator can be used for variables, but not data types.

» The (type) operator cannot cast to fixed-dimension arrays using C cast

syntax.
Fortran When writing code fragments in Fortran, keep these guidelinesin mind.
Constructs
Supported
Syntax  Syntax isfree-form. No column rules apply.

222 TotaView User's Guide

One statement is allowed per line, and one lineis allowed per statement.

The space character issignificant and sometimesrequired. (Some Fortran 77
compilersignoreall space characters, wherever they are coded.) For example:

valid Invalid
DO 100 I1=1,10 DOL0OOI=1, 10

CALL RINGBELL CALL RI NG BELL
X .EQ 1 X.EQ 1

GOTO, GO TO, ENDIF, and END IF are al alowed. But ELSEIF is not;

use ELSE IF.

Comment lines can be defined in several formats. For example:
Cl=l+1



Data Types and
Declarations

Statements

Writing Code Fragments

/*

| =1 +1

J=J+1
ARRAYL(I,J)=1 * J
*)

Data types permitted: INTEGER (assumed to be long), REAL, DOUBLE
PRECISION, and COMPLEX.

Implied data types are not permitted.

Only simple declarations are permitted. The COMMON, BLOCK DATA,
EQUIVALENCE, STRUCTURE, RECORD, UNION, and array
declarations are not permitted.

References to variables of any type in the target program are permitted.

Permitted statements: assignment, CALL (to subroutines, functions, and all
intrinsic functions except CHARACTER functions in the target program),
CONTINUE, DO, GOTO, IF (including block |F, ENDIF, EL SE, and EL SE
IF), and RETURN (but not alternate RETURN).

As an extension to the GOTO statement, you can refer to aline number in
the target program. This line number refers to the tag field number of the
source code line. For example, this GOTO statement causes the program to
branch to source line number 432 of the target program:

GOTO $432;
Thedollar signisrequired before the line number to distinguish thetag field
number from a statement label.
All expression operators are supported except CHARACTER operators and
thelogical operators .EQV ., .NEQV ., and .XOR..
Subroutine function and entry definitions are not permitted.
Fortran 90 array syntax is not supported.
Fortran 90 pointer assignment (the => operator) is not supported.

Calling Fortran 90 functions which require assumed shape array arguments
is not supported.

TotalView User's Guide 223



CHAPTER 8: Setting Action Points

Writi ng On AlphaDigital UNIX and RS/6000 IBM AIX operating systems, Total View
supports the use of assembler codein EVAL points, conditional breakpoints, and
Assembler Code the expression window.

Note:  If you want to use assembler constructs, you must enable
compiled expressions. See “Interpreted vs. Compiled
Expressions’ on page 209 for instructions.

To indicate that an expression in the breakpoint or expression windows is an
assembl er expression, click onthe ASM button in the expression window asshown
in Figure 85.

{301 Breakpoint
[ Stop ALl Related Processes when Breakpoint Hit

rocess Barrier Breakpoint
Stop ALl Related Processes when Barrier Breakpoint Hit

Evaluate Expression

[ddl zero.1.v0

Assembler

ASM button
éﬂ
{57 Log Gist Ewent Event Name;

[
Variable to Tracks | |
Format String: |

B Action Paint Enabled
B Share Action Point in ALl Related Processes

[ | [ oClear | [ Abort Y [ Delete f

Action Point 23 line 303 in main+0x28c file "fork_loop,caxx"

Figure85. ASM Button in Expression Window

Assembler expressions are written in the Total View Assembler Language. In the
TotalView Assembler Language, instructions are written identically to the native
assembl er language, but the operators available to construct expressionsin
instruction operands and the set of available pseudo-operators is common across
all architectures.

224 TotaView User's Guide



Writing Code Fragments

The Total View Assembler accepts instructions using the same mnemonics
recognized by the native assembler and recognizes the same names for registers
that native assembl ersrecogni ze. Somearchitecturesprovide extended mnemonics
that do not correspond exactly with machineinstructions. Normally, theseextended
mnemonics represent important, special cases of instructions, or provide for
assembling short, commonly used sequences of instructions. The TotalView
Assembler recogni zes such extended mnemonics as long as they meet both of the
following criterion:

» They assemble to exactly one instruction, and

» Therelationship between the operands of the extended mnemonics and the
fieldsin the assembled instruction code is a simple one-to-one
correspondence

In Total View Assembler Language, |abelsareindicated asname:, appearing at the
beginning of aline. Labels may appear alone on aline. Symbols available for use
include any labels defined in the assembler expression and all program symbols.

The set of operatorsavailablefor usein the Total View Assembler areindicated in
Table 18.

Table18. TotalView Assembler Operators

Operators Definition

hi16 (expr) Low 16 hits of operand expr

016 (expr) High 16 bits of operand expr

hi32 (expr) High 32 bits of operand expr

032 (expr) Low 32 hits of operand expr
“text” Text string, 1-4 characterslong, is

right justified in a 32-bit word
+ Plus
- Minus (also unary)
* Times

/ Quotient

TotalView User's Guide 225



CHAPTER 8: Setting Action Points

Table18. TotaView Assembler Operators (Continued)

Operators Definition

# Remainder

& Bitwise and

A Bitwise xor

! Bitwise or not (also unary - bitwise
not)
Bitwise or

<< L eft shift

>> Right shift

(expr) Grouping

The set of pseudo-operations available for use in the TotalView Assembler are

listed in Table 19:

Table19. TotalView Assembler Pseudo Ops

Pseudo Ops

Definition

$debug[ 0] 1]

Pptree

$stop
$stopprocess
$stopall
$stopthread

Internal debugging option.

With no operand, toggle debugging;
0 => turn debugging off;

1 => turn debugging on

Internal debugging option.
Print assembler tree

Stop the process

Stop the program group

Stop the thread

226 TotaView User's Guide



Writing Code Fragments

Table19. TotalView Assembler Pseudo Ops (Continued)

Pseudo Ops Definition

$hold Hold the process

$holdprocess

$holdstopall Hold the process and stop the program

$holdprocessstopall group

$holdthread Hold the thread

$holdthreadstop Hold the thread and stop process

$holdthreadstopprocess

$holdthreadstopall Hold the thread and stop the program
group

$long_branch expr Branch to location expr, using asingle

instruction in an architecture
independent way, without requiring the
use of any registers

align expr [, expr ] Align location counter to an operand 1
alignment; use operand 2 (or zero) asthe
fill value for skipped bytes

byteexpr [ ,expr] ... Place expr values into a series of bytes

half expr [ ,expr] ... Place expr values into a series of 16 bit
words

word expr [, expr] ... Place expr valuesinto a series of 32 bit
words

quad expr [, expr] ... Place expr values into a series of 64 bit
words

float expr [, expr] ... Place expr valuesinto a series of floats

doubleexpr [, expr] ... Place expr valuesinto aseries of doubles

string string Place string into storage

TotalView User's Guide 227



CHAPTER 8: Setting Action Points

Table19. TotalView Assembler Pseudo Ops (Continued)

Pseudo Ops Definition

ascii string Same as string

asciz string Zero terminated string
zero expr Fill expr bytes with zeros

fill expr , expr , expr

org expr [, expr ]

def name,expr
name=expr

Isym name,expr

bss name,expr[,expr]

comm name,expr

lcomm name,expr|[,expr]

global name
text

data

Fill storagewith operand 1 objectsof size
operand 2, filled with value operand 3

Set location counter to operand 1 use
operand 2 (or zero) to fill skipped bytes

Define asymbol with expr asit's value
Same as def name,expr

Same as def nhame,expr but allows
redefinition of apreviously defined name

Definenameto represent operand 2 bytes
of storage in the bss section with
alignment operand; default alignment
depends on the size:

if size>=8then 8 else

if sze>=4then4 else

if size>=2then2elsel

Define name to represent expr bytes of
storage in the bss section; nameis
declared global; aignment isasin bss
without an alignment argument

Identical to bss
Declare name as global
Assemble code into text section (code)

Assemble code into data section (data)

228 TotaView User's Guide



Writing Code Fragments

Table19. TotalView Assembler Pseudo Ops (Continued)

Pseudo Ops Definition
equiv name,name Make operand 1 be an abbreviation for
operand 2

TotalView User's Guide 229



CHAPTER 8: Setting Action Points

230 TotaView User's Guide



CHAPTER 9:
Visualizing Data

The TotalView Visualizer is part of a suite of software development tools for
debugging, analyzing, and tuning the performance of programs. It works with the
TotalView debugger to create graphicimages of array datain your programs. This
lets you see your data graphically as you debug your programs.

The visualizer isimplemented as a self-contained process. It can be launched
directly by TotalView to visualize dataasyou debug your programs. Alternatively,
you can run the visualizer from the command line to visualize data dumped to a
filein aprevious TotalView session.

Y ou interact with TotalView to choose what you want to visualize and when the
snapshot of your datashould begrabbed. Y ouinteract with thevisualizer to choose
how you would like your data to be displayed.

Note: The TotalView Visualizer is not available on all platforms.

This chapter explains how to usethe Visualizer with Total View to visualize array
data. In this chapter, you will learn:

* How the visualizer works

e Launching the Visualizer from TotaView

» Typesof datathat TotalView can visualize

» Visualizing data from the Total View variable window

» Visualizing datain expressions at breakpoints and in the expression window

* What the Visualizer’s windows do

» Changing settings from the directory window

TotalView User's Guide 231



CHAPTER 9: Visudlizing Data

o Data-set formatting for the visualizer

* Methods of visualization

» Changing displays of data

* Manipulating displays of data

e Launching the Visualizer from the command line

» Launching the Visualizer from athird party debugger
» Adapting third party visualizersto TotalView

How the There are two sides to using the Total View Visualizer; extracting data from the
Visualizer program being debugged, and displaying the data graphically. The TotalView
debugger handles the first of these, extracting the data and marshaling it into a
Works standard format that it sends down apipe. The Visualizer then reads the datafrom
this pipe and displaysit for your analysis. Figure 86 shows how thisis
implemented.
TotalView — Extracts datafrom an array TheTotalView Visualizer — Displays

the array data graphically

o
Pipe “ Ve

0.3

] Index Value

03013601 0,205555456205436

0.2

0.1

Sends datain
standard format
to avisualizer

RNV H

Figure86. TotalView Visualizer Connection

232 TotaView User's Guide



This split between the TotalView Debugger and the Visualizer also allows for
different implementations of the visualizer. It means that you interact with
TotalView to choose what you want to visualize and when you want to grab a
snapshot of your data. Y ou interact with the Visualizer to choose how to display
your data.

Y ou can send data directly from the Total View Debugger to the Total View
Visualizer while you are debugging your program. Y ou can send data from
TotalView directly to athird party visualizer that allows you to write your own
visualizer program, or adapt an interface for visualization with athird-party
product. Finally, you can launch the Total View Visualizer from the command line
using datayou have already saved to afile. Figure 87 shows these rel ationships.

Jotalview L aunchVisualizer TotalView Visualizer
| E i | from TotaView >
Launch Jhi rd e data ][-a“ncé‘ Visud ijzﬁr_
Party Visualizer tofile rom Omflnan Ine
Third Party Visualizer
Visudizer 4 DataFile

Figure87. TotaView Visualizer Relationships

TotalView User's Guide 233



CHAPTER 9: Visudlizing Data

Configuring TotalView to Launch the
Visualizer

When TotalView launches the Visualizer, it pipes data to standard input of the
Visualizer so you can visualize data-sets as your program creates them.

Total View automatically launchesthe visualizer whenitisrequestedin avariable,
breakpoint, or expression window. Y ou can configure TotalView to set the
following:

»  Whether or not visualization is enabled.
» The shell command used by TotaView to launch the Visualizer.

»  Themaximum number of dimensionsof an array that Total View will export
to the Visualizer.

If you disable visualization, all attemptsto use the visualizer are silently ignored.
This can be useful if you want to execute some code containing eval uation points
that do visualization, but do not want to disable all the evaluation points
individualy.

To change the Visualizer launch options interactively, select the Visualizer
Launch Window from the root window. A dialog box appears, as shown in
Figure 88.

B TotalView Yisualizer Auto Launch Enabled

Vizualizer launch command:

Bisualize

Haximum permissible ranky

ook £ Tefaults § b obort §

Figure88. The Visualizer Launch Window

234 TotaView User's Guide



Configuring TotalView to Launch the Visualizer

To enter your choices, do the following:

1.

Change the auto launch option. The TotalView Visualizer is set to enable
visualization and launch thevisualizer automatically by default. If you do not
want it tolaunchautomatically and disablevisualization, clear the Total View
Visualizer Auto Launch Enabled checkbox.

If you want the visualizer to use a customized command when it starts, enter
itin the Visualizer launch command box.

Change the maximum permissible rank. Edit the value (the supported range
is1 through 16) if you plan to save the data that you export from TotalView
to afileor display it in adifferent visualizer.

The maximum permissible rank (the default is 2), ensures that data exported
by TotalView is suitable for display in the TotalView Visualizer which

displaysonly two dimensions of data. Thislimit does not apply to datasaved
infiles, or to visualizers that can display more than two dimensions of data.

Clicking onthe Defaults button setsthe optionsto the defaults. Notethat this
revertsto the standard defaultseven if you have used an X resourceto change
the settings on start-up.

If you want to use these settings, press Return or click onthe OK button. To
abandon your edits, click on the Abort button.

If you disablevisualization or changethevisualizer launch string whileavisualizer
isrunning, TotalView closesthe pipeto thevisualizer. If you enable visualization
again, anew visualizer process will be launched the next time you visualize
something.

Y ou can change the shell command that TotalView uses to launch the visualizer
by editing the Visualizer launch string. Thisisuseful if you want to run adifferent
visualizer, or if you want to save visualization datato afile for viewing later. For
example, you can save the file with the following visualizer launch string:

cat > your_file

Later, you can visualize thefilewith one of thefollowing (equival ent) commands:

% visualize —persist <your_file

% visualizefileyour_file

TotalView User's Guide 235



CHAPTER 9: Visudlizing Data

Y ou can set the visualizer launch options automatically when Total View starts, by
setting X resources. For details, see Chapter 11, “X Resources,” on page 263.

Data Typesthat TotalView Can Visualize

The data you select for visualization as asingle entity is called a data-set. Each
data-set passed from Total View totheVisualizer istagged withanumericidentifier
totell the Visualizer whether thisisanew data-set, or an updateto an existing data-
set. Total View creates the identifier from the program, base address and type of
thedatasel ected for visualization. Thisensuresthat when you visualizethe same’
data by different methods, the same set of imagesisupdated. Note that this causes
the visualization of a stack variable at different recursion levels or call paths, to
appear as separate images instead of updates to an existing image.

By default, TotalView restricts the type of datait can visualize to one and two
dimensional arrays of character, integer, or floating point data. These must be
located in memory, not in registers.

Y ou can visualize arrays with more dimensions by using an array slice expression
to extract an array with fewer dimensions. Figure 89 shows how athree
dimensional variable hasbeen sliced to two dimensions by selecting asingleindex
in the middle dimension to permit visualization.

TN ooz
{at Ox2FeaZZ20) Tuype: double[41012810256] it
Slice: [:1013110:] [
Index Yalue =
[0101100] 0, 2080004062004 36
[0101101] 0, 202747 220662501
[0I01102] 0, 200056920743119
[0101103] 0,1974847 79377805
[0101104] 0,13503100533404 2
[0I01105] 0,192695734038728
[0I0110R] 00,1904 7932761226
[OI0A107] 0,1883817 705921959

Figure89. A Three Dimensional Array Sliced to Two Dimensions

236 TotaView User's Guide



Visualizing Data from the Variable Window

Visualizing Data from the Variable
Window

Thesimplest way tovisualizedatafrom Total Viewisby usingthevariablewindow.
For details on the variable window, see Chapter 7, “ Examining and Changing
Data,” on page 147. Open a variable window on the array of interest and stop
program execution where the array values are those you would like to visualize.
At thispoint, the Total View variablewindow should show the current array values
in atext format as shown in the example in Figure 90.

AR TR R TN oz v RERIORRRORRREIARRDERRDERRROARRRRCRR DR RO RRREORR N

{5t Oxeff7F368) Type: doubls[25610256] ifs
Slices [31[:] D

Irndex Yalue

[01L0] 0

[0101] 0

[01C2] 0

[01C3] 0

(01041 0 <

Figure90. Variable Window

Y ou can edit the type and slice expressions in the variable window to select the
precise data you want to visualize. Y ou can display subsections of arrays, which
are called dices, to limit the volume of data you examine at one time. See
“Displaying Array Slices’ on page 172. Limiting the volume of dataincreasesthe
speed of the visualizer.

Withthedesired array (or array slice) displayed in the variable window, select the
Visualize (v) command from the window menu to launch the visualizer program
and send it the array data you want to visualize. The first visualize command
launches the visualizer program (if needed) and creates the initial data window
display. Subsequent Visualize commands send updated data values and cause the
visualizer to update its display.

TotalView User's Guide 237



CHAPTER 9: Visudlizing Data

Y ou can visualizelaminated datapane displays, using the visualize command. See
“Visualizing a Laminated Data Pane” on page 179. The process or thread index
forms one of the dimensions of the visualized data. By default therefore, you are
restricted to visualizing scalar or vector information. If you do not want the process
or thread index as one of the dimensions of your visualization, you can use a non-
laminated display instead and visuaize it.

Visualizer datadisplayed through avariable window is not automatically updated

as you step through your program. Y ou must explicitly request an update by
reissuing the Visualize (v) command in variable window.

238 TotaView User's Guide



Visualizing Datain Expressions

Visualizing Data in Expressions

Y ou can use Total View' s expression system to visualize datawith the $visualize
built-in function. Y ou can use it to:

» Visualize severa different variables from a single expression

» Visuadize variablesin the expression eval uation window

» Visualize one or more variables from an evaluation point

The $visualize built-in function takes two parameters separated by a comma.
$visualize (array [, slice_string])

Thefirst parameter array isan expression that specifiesadata-set for visualization.
The second parameter dice_string is optional. If present, it isaquoted string
containing a constant slice expression that modifies the data-set specified by the
first parameter. The following examples assumethat your program contains atwo
dimensional array called my_array.

Table20. $visualize examplesfor C and Fortran

C

Fortran

$visuaize (my_array);

$visuaize (my_array)

$visualize (my_array,”[::2][10:15]") $visuaize (my_array,’(11:16,::2)")

$visualize (my_array,”[12][:]"); $visuaize (my_array,’ (:,13)")

The first example smply visualizes the whole array. The second example selects
every second element in the major dimension of thearray, and also clipsthe minor
dimensiontoall elementsinthegiven (inclusive) range. Thethird examplereduces
the visualized data-set to a single dimension, by selecting a single sub-array.

Y ou may have to use a cast expression to let TotalView know the dimensions of
the variable you want to visualize. The following shows a procedure that passes a
two dimensional array parameter, without specifying the extent of the major
dimension.

voi d ny_procedure (double ny_array[][32])
{ I'* procedure body */ }

TotalView User's Guide 239



CHAPTER 9: Visudlizing Data

Visualizer
Animation

Attempts to visualize my_array directly will fail because the first dimension is
not specified. The following cast expression defines the dimensions of the array,
and alowsyou to visualize it.

$visuali ze (*(doubl e[ 32][32]*)ny_array);

Y ou can use the $visualize built-in statement in an expression in the expression
window or by adding an expression to a breakpoint to create an evaluation point.
But note that any evaluation point or expression in the expression window that
includes an instance of $visualize cannot be compiled. Instead, the TotalView
debugger interprets these statements. See “Defining Evaluation Points’ on

page 205 for information about compiled and interpreted expressions.

Using $visualizeinthe expression window isahandy techniqueto refinethe array
and slice arguments or to update the Visualizer display of several arrays
simultaneously.

Using the $visualize built-in statement in an evaluation point expression isa
powerful technique to provide an animated display of your data. When used in an
evaluation point, the $visualize statement forces the Visualize program to update
its display of the array argument every time the evaluation point is reached by
program execution. By setting an evaluation point using $visualize at program
statements which change the values of array elements, you can create a visual
animation of the array as the program executes.

240 TotaView User's Guide



The TotalView Visualizer

The TotalView Visualizer

The Visuaizer isimplemented as a self-contained process. Y ou can launch it
directly from TotalView while you are debugging your programs. Or, you can
launchit fromthecommandlinetovisualizedatayou savedtoafile. TheVisualizer
can read data-sets on its standard input stream, or from afile. The Visualizer
windows are shown in Figure 91.

Directory
window
Data 1
windows
1.00
W oo
0.64
0.45
0.27
0.09
. -0.09
Graph View —| | e
-0.45
-0.64
-0.82
-1.00
Surface View

Figure9l. Visualizer Windows

The Visualizer isaMatif application, so you may change some of the Visualizer
settings using X resources. See “Visualizer X Resources’ on page 283.

TotalView User's Guide 241



CHAPTER 9: Visualizing Data

The Visualizer has two types of windows:

* A directory window

A single main window lists the data-sets that you can visuaize. You can
interact with the directory window to set global options and to create views
of your data-sets.

» Datawindows

The data windows contain images of the data-sets. By interacting with adata
window, you can change its appearance and set options on viewing its data-
set. Using the directory window, you can open several datawindows on a
single data-set to get different views of the same data.

Directory Window Thedirectory window contains alist of the data-sets you can display in the
Visualizer. Y ou can create these data-sets during your debugging session or from
afile See Figure 92.

Whenever Total View passesthe Visualizer anew data-set the Visualizer updates
thelist of data-setsin the directory window.

Menu Bar

Data-Set List

Figure92. Sample Visualizer Directory Window

Y ou can select adata-set by left-clicking on it. Y ou can select only one data-set at
atime. Right-clicking inthe data-set list displaysthe View menu. From thismenu,
you can select Graph or Surface visualization.To delete adata-setsfrom thelist,
click on it then display the File menu and select Delete. Updatesto existing data-
sets do not ater thelist.

242 TotaView User's Guide



The TotalView Visualizer

Y ou can automatically visualize the selected data-set by left-clicking in the data-
set then pressing Return. Y ou can also doubl e-left-click inthe data-set list to select
and auto-visualize a data-set.

For alist of the menu and command choices from the directory window, see
Table 21.

Table21. Directory Window Menu Commands

Menu Command Meaning

File Delete Deletes the currently selected data-set.
It removesthe data-set from the data-set
list and destroys any data windows

displaying it.
Exit Closes al windows and exits the
Visudizer.

View Graph Creates a new graph window. See
“Graph Data Window” on page 247 for
more detail.

Surface Creates anew surface window. See

“Surface Data Window” on page 249
for more detail.

Options Auto Thisitemisatoggle. When enabled, the
Visualize Visualizer automatically visualizes new
data-sets as they areread. See section 4
for information on how thevisualization
method is selected.

TotalView User's Guide 243



CHAPTER 9: Visudlizing Data

Data Windows Datawindowsdisplay graphical images of your data. An example of two different
types of data window is show in Figure 93.

Menu Bars - File
Surface View .
Graph View ——
1.01
File VYiew 0.0
0.8
0.7
0.6
1.00 0.5
0.82
0.64 0.4
0.45
0.27 0.3
0.09
-0.09 0.2
-0.27
—0.45 0.1
-0.64 N
.82 0.0
_1.00 0 20 |4u 60 80 100 120
4+——Drawing Area

Figure93. Sample Visuaizer Data Windows

All data windows contain a menu bar and adrawing area. The datawindow title,
as displayed by the window manager, is its data-set identification.

The File menu on the menu bar isthe same for all datawindows. Any other items

on the menu bar are specific to particular types of datawindow. The common data
window menu commands are described in Table 22.

244 TotaView User's Guide



The TotalView Visualizer

Table22. DataWindow Menu Commands

Menu Command Meaning

File Directory Raisesthe directory window to thefront
of the desktop. If the directory window
is currently minimized, it is restored.

New Base Creates a new data window using the

Window same visuaization method and data-set
asthe current data window. This helps
you to create several views of adata-set
using the same visualization method.

Options Pops-up awindow of viewing options.
Thiswindow consists of a control area
and an action area. The control areais
specific to the type of datawindow. The
action area contains three buttons as
follows:

e OK — Apply any changes and pop
down the options window.

* Apply — Apply the options settings
in the control area, but leave the
options window up.

e Cance — Popdowntheoptionsand
discard any changesin the control
area.

Y ou can aso cancel any changes you
have madein the control areaby closing
the options window.

Delete Deletesthe datawindow’ sdata-set from
the data-set list. This also destroys any
other data windows viewing the data-
Set.

Close Closes the data window.

TotalView User's Guide 245



CHAPTER 9: Visudlizing Data

Thedrawing areadisplaystheimageof your data. Y ou caninteract withthedrawing
areato alter the view of your data. For example, in the surface view, you can rotate
the graph to view it from different angles. Y ou can also get the value and indices
of the data-set element nearest the cursor by left-clickingonit. A pop-up awindow
displays the information. For details on this and other ways to manipulate the

surfaceview, see Table 27, “ Surface Data Window Manipulations,” on page 253.

Views of Data

Different types of data-setsrequire different graphical viewsto display their data.
For example, agraph is more suitable for displaying one dimensional data-sets or
two dimensional data-sets where one of the dimensions has a small extent. But a
surface view is necessary for displaying atwo dimensional data-set.

Y ou can manually choose a visualization method for a given data-set or you can
let the Visualizer choose one for you. The Visualizer chooses a method based on
the following criteria:

1. If any datawindows are currently displaying the data-set, they are raised to
thetop of thedesktop. If any of thesewindowsisminimized, they arerestored.

2. If no datawindowsexist for the data-set, but the data-set has been visualized
previously, the Visualizer creates anew data window using the most recent
visualization method.

3. If thedata-set has never been visualized, the Visualizer chooses amethod of
display based on the type of the data-set. Methods that can’t visualize the
data-set are ruled out. The Visualizer then chooses one of the remaining
methods, based on aninternal scoring system that measureshow well agiven
data-set matches an ideal data-set for each method.

The Visualizer can automatically choose a visualization method and create a new
data window when it reads a new data-set. When the data-set is an update to an
existing data-set, the Visualizer uses the method last used to visualize the data.

Y ou can enable and disable this feature from the Options menu in the Total View
Visualizer directory window.

246 TotaView User's Guide



Graph Data
Window

Views of Data

The graph window displays atwo dimensional graph of one or two dimensional
data-sets. If the data-set is two dimensional, multiple graphs are displayed. When
you first create agraph window on atwo dimensional data-set, the Visualizer uses
the dimension with the larger number of elements for the X axis. It then draws a
separate graph for each sub-array in the dimension with the smaller number of
elements. If this choiceis not correct, you can transpose the data. Graph
visualization does not favor two dimensional data-sets with large extentsin both
dimensions asthis gives avery cluttered display.

File

0.7
0.6

1] 20 40 60 a0 100 120

Figure94. Visuaizer Graph Data Window

Y ou can display graphs with markers for each element of the data-set, with lines
connecting data-set el ements, or with both linesand markersasshownin Figure 94.
See “Displaying Graphs’ on page 248 for more details. Multiple graphs are
displayed in different colors. The X axis of the graph is annotated with theindices
of thelong dimension. The Y axis shows you the data value.

Y ou can scale and translate the graph, or pop up awindow displaying the indices

and valuesfor individual data-set elements. See “Manipulating Graphs’ on
page 248 for details.

TotalView User's Guide 247



CHAPTER 9: Visudlizing Data

Displaying Graphs Thegraphoptionsdialog letsyou control how to display the graph. Y ou can bring
up thisdialog box by displaying the Filemenuand sel ecting the Optionscommand.
See Table 23 for details.

Table23. Graph Data Window Options Dialog

Toggle Meaning

Lines Toggles the display of lines connecting data-set
elements.

Points Toggles the display of markers for each data-set
element.

Transpose Togglesthe choice of dimension to map onto the X

axis of the graph for two dimensional data-sets.

Manipulating Y ou can get adetailed view of part of the graph by using the keyboard and mouse

Graphs with the focusin the drawing area. Y ou can control scaling and translation
separately, or both together with a zoom. Y ou can aso query individual element
values. See Table 24 for details.

Table24. Graph Data Window Manipulations

Action Description

Scale Press the Control key and hold down the middle
mouse button. M ove the mouse down to zoominon
the center of the drawing area, or up to zoom out.

Trandate Press the Shift key and hold down the middle
mouse button. Moving the mouse drags the graph.

Zoom Pressthe Control key and hold down the left mouse
button. Drag the mouse button to create arectangle
that encloses the area of interest. The areaiis then
translated and scaled to fit the drawing area.

Reset View Pressr to reset all trandation and scaling. This
resets the view of the graph to theinitia state.

248 TotaView User's Guide



Surface Data
Window

Views of Data

Table24. Graph Data Window Manipulations (Continued)

Action Description

Query Hold down the left mouse button near a graph
marker. A window pops up displaying the data-set
element’ sindices and value.

Figure 95 shows a graph view of two dimensional random data. It is created by
selecting Points and deselecting Linesin the graph data window options dialog
box.

File
1 T e T R RETe T 47 .
ool gae (0 cgepe %7 LA
- iy * " “t S S
* H 2hosse, * 00 .
L]
6000000004 #§% . G rey, .y ;;
& b 3 e -
* Y H l" .
+
* ) 4 " e N
- - s‘ "
. - » atire
400000000 I3 L s . s :
taTany » bl 11 s ",
l [t .t P - !“ i :
» ™ . .
:‘!‘ - - =“ # ‘l. :‘ : ey
|__ g i gy * . . o
2000000001 LT P-4 2l .t e
PR b4 " e
* * » L L s
:ﬁ' -i‘ .8 * . »
'y ..-‘=-. - - . P
* " oy » L e
O mgt e Se
o 100

Figure95. Display of Random Data

The surface data window displays two dimensional data-sets as a surface in two
or three dimensions. The data-set’ s array indices map to the first two dimensions
(X andY axes) of thedisplay. Figure 96 shows atwo dimensional map, wherethe
data-set values are shown using only the Zone option to demarcate ranges of
element values. For azone map with contour lines, turn the Zone and Contour
settings on and M esh and Shade off.

TotalView User's Guide 249



CHAPTER 9: Visualizing Data

1.00
. 0,82
0.64
0,45

0,27
0,09

=0,09
- =0,27

-0.45
-0.64
-0.82
=-1.00

Figure96. Two Dimensiona Surface Visualizer Data Display

Y ou can display random data by selecting only the Zone setting and turning M esh,
Shade, and Contour off. The display showswhere the dataislocated and allows
you to click on it to get the values of the various points.

Figure 97 shows a three dimensiona surface which maps element values to the
height (Z axis).

250 TotaView User's Guide



Views of Data

File Wiew

poSSSooSSooH
SRREUEBEGRBE

Figure97. Three Dimensional Surface Visualizer Data Display

Displaying Surface Youhavesevera optionsto help you control the display of the surface data. They

Data are availablein the options dialog box. In the data window, display the File menu
and select the Options command. A dialog box appears with choices shown in
Table 25.

TotalView User's Guide 251



CHAPTER 9: Visudlizing Data

Table25. Surface Data Window Options

Toggle

M eaning

Mesh

Shade

Contour

Zone

Auto Reduce

Toggles the mesh option. When this option is set,
the surface is displayed in three dimensions, with
the X-Y grid projected onto the surface. When
neither this option nor the shade option are set, the
surfaceis displayed in two dimensions (See
Figure 96).

Toggles the shade option. When this option is set,
the surface is displayed in three dimensions and
shaded either in a“flat” color to differentiate the
top and bottom sides of the surface, or in colors
corresponding to the valueif the zone optionisalso
set. When neither this option nor the mesh option
are set, the surface is displayed in two dimensions
(See Figure 96).

Togglesthe contour option. When thisoptionisset,
contour lines are displayed demarcating ranges of
element values.

Toggles the zone option. When this option is set,
the surface is displayed in colors demarcating
ranges of element values.

Toggles the auto-reduce option. When this option
isset, the surface displayed isderived by averaging
over neighboring elementsin the original data-set.
This speeds up the visualization method by
reducing the resolution of the surface. Clear this
option if you want to accurately visualize al data-
set elements.

The Auto Reduce option allows you to choose between viewing all your points of
data, which takes |onger to appear in the display, or viewing an averaging of data
over anumber of nearby points, which appears in the display much faster. The

default for Auto Reduce is on so your display appears faster.

252 TotaView User's Guide



Manipulating
Surface Data

Views of Data

Y ou can reset the viewing parameters to those in effect when the Visualizer first
cameup. TheView menuinthedatawindow letsyou reset the viewing parameters.
Choose Reset View (r) from the View menu in the data window.

Table26. Surface Data Window Menu Commands

Menu Command Meaning

View Reset View  Restores all trand ation, rotation and
scaling. Thisresets the view of the
surface to theinitial state and enlarges
the display dlightly.

Y ou can rotate a three dimensional surface to change the viewing angle, so you
can see parts of the surface that are hidden from some viewing angles, or get a
detailed view of part of the surface. When you click and hold the middle mouse
button in the drawing area, then drag the mouse. The image changesto awire-
frame bounding box of the surface which moves with the mouse. Y ou can rotate
the view in two dimensions simultaneously, or select asingle axis at atimeto
rotate. When you | et go of the button, you can see the graph from the new, selected
vantage point.

Inadditiontorotating thegraph, you can manipulateit several other ways, asshown
inTable 27.Y ou candisplay theindicesand valuesof individual data-set elements
inapop upwindow. Y ou can control scaling and translating separately, or together
with azoom. Y ou can query the values of individual elements. And you can reset
the view to what it was when you started.

Table27. Surface Data Window Manipulations

Action Description

Rotate Hold down the middle mouse button and drag the
mouseto freely rotate the surface. Y ou can also press
the x, y, or z keysto select asingle axis of rotation.

Scale Press the Control key and hold down the middle
mouse button. Move the mouse down to zoom in on
the center of the drawing area, or up to zoom out.

TotalView User's Guide 253



CHAPTER 9: Visudlizing Data

Table27. Surface Data Window Manipulations (Continued)

Action

Description

Trandate

Zoom

Reset View

Query

Press the Shift key and hold down the middle mouse
button. Moving the mouse drags the surface.

Press the Control key and hold down the left mouse
button. Drag the mouse button to create arectangle
that encloses the area of interest. The areaisthen
translated and scaled to fit the drawing area.

Pressr to reset translation and scaling. This does not
reset the rotation.

Hold down the |eft mouse button near the surface. A
window pops up displaying the nearest data-set
element’ s indices and value.

L aunching the Visualizer from Command

Line

To start the Visualizer from the shell command line, use the following syntax:

% visualize [options]

where options include:

—file filename

—persist

254 TotaView User's Guide

Reads data from filename instead of reading

from standard input.

Continuesto run after encountering an EOF
on standard input. Without this option, the
Visualizer exits as soon as it reads al of the

data from standard input.



Launching the Visualizer from Command Line

By default, the Visualizer reads its input data sets from its standard input stream
and exitswhen it reads an EOF on standard input. When started by TotalView, the
Visualizer normally reads its data from a pipe, ensuring that the Visualizer exits
when Total View does. If youwant the Visualizer to continueto run after it exhausts
all input from the standard input stream, you should invokethe Visualizer with the
—persist option.

If you want to read data from afile, invoke the Visualizer with the —file filename
option. For example:

% visualize—filemy_data_set file

When you visualize data-sets from afile, the Visualizer reads all the data-setsin
thefile. Thismeansthat theimagesyou see are of thelast versions of the data-sets
inthefile.

Visualize supportsthe generic X toolkit command line options. For example, you
can start the Visualizer with the directory window minimized by using the—iconic
option. Y our system manual page for the X server or the The X Window System
User’sGuide, by O’ Reilly & Associatesliststhe generic X command line options
in detail.

Y ou can also customizethe Visualizer by setting X resourcesin your resourcefiles
or on the command line with the —xrm resource_setting option. The available
resources are described in Chapter 12, “TotalView Command Syntax,” on

page 287. Use of X resources to modify the default behavior of TotalView or the
TotalView Visualizer isdescribed in greater detail in Chapter 11, “X Resources,”
on page 263.

TotalView User's Guide 255



CHAPTER 9: Visudlizing Data

Adapting a Third Party Visualizer to the
TotalView Debugger

TotalView passes a stream of data-sets to the Visualizer encoded in the format
described below. Y ou can write your own Visualizer or adapt an interfaceto a
third-party Visualizer by parsing this format. However, before doing this, you
should be aware of some assumptions in the design of the interface:

» Thedata-set encoding assumesthat Total View andthe Visualizer arerunning
on the same machine architectures, meaning that word lengths, byte order
and floating-point representations are identical. Note that there is sufficient
information in the data-set header to detect when thisis not the case (with
the exception of floating-point representation), but no simple way of
describing any required translations.

» TotalView transmits data-sets down the pipein asimple unidirectional flow.
Thereisno handshaking protocol intheinterface. ThisrequirestheVisualizer
to be an eager reader on the pipe. If the Visualizer does not read eagerly, the
pipe will back up and block TotalView.

The format of a data-set isincluded in the TotalView distribution in a header file
named include/visualize.h in the Total View installation directory. Each data-set
isencoded with afixed-length header followed by astream of array elements. The
header contains the following fields.

Table28. Data-Set Header Fields

Field Meaning

vh_magic ContainsVIS MAGIC, asymbolic constant to provide
acheck that thisis a data-set header and that byte order
is compatible.

vh_version Contains VIS VERSION, a symbolic constant to

provide acheck that the reader understands the protocol.

vh_id Containsthe data-set id. Every data-set in a stream of
data-setsis numbered with auniqueid so that updatesto
aprevious data-set can be distinguished from new data-
sets.

256 TotaView User's Guide



Adapting a Third Party Visualizer to the Total View Debugger

Table28. Data-Set Header Fields (Continued)

Field

M eaning

vh_title

vh_axis order

vh_type

vh_item_length

vh_item_count

vh_effective rank

vh_dims

Contains a plain text string of length
VIS MAXSTRING that annotates the data-set.

Contains one of the constantsvis ao_row_major or
vis_ ao_column_major.

Contains one of the constantsvis signed_int,
vis_unsigned_int, or vis fl oat.!

Contains the length (in bytes) of single element of the
array.

Contains the total number of elements to be expected.

Contains the number of dimensions that have an extent
larger than 1.

Containsinformation on each dimension of the data-set.
Thisincludes abase, count and stride. Only the count is
required to correctly parse the data-set. The base and

stride only give information on the valid indicesin the

origina data.?

1. Typesin the data-set are encoded by a combination of the vh_typefield and
the vh_item_length field. This allows the format to handle arbitrary sizes of
both signed and unsigned integers, and floating point numbers.

Thevis _float constant correspondsto the default floating point format (usually,
IEEE) of thetarget machine. The Visualizer doesnot handle values other thanthe
default on machines that support more than one floating point format.

Although athree byteinteger isexpressiblein the Visualizer’ s data-set format, it
isunlikely that the Visualizer will handle one. The Visualizer only handles data
types that correspond to the C data types permitted on the machine where the
Visualizer isrunning.

Similarly, thelong double type varies significantly depending on the C compiler
and target machine. Therefore, visualization of the long double type is unlikely
to work if you run the Visualizer on amachine that is different from the one
where you extracted the data.

In addition, you need to be aware of these datatype differencesif you write your
own visualizer and planto runit on amachinethat isdifferent from the onewhere
you extract the data.

TotalView User's Guide 257



CHAPTER 9: Visudlizing Data

2. Notethat al VIS MAXDIM S of dimension information is included in the
header, even if the data has fewer dimensions.

The data following the header is a stream of consecutive data values of the type
indicated in the header. Consecutive datavaluesin the input stream correspond to
adjacent elementsin vh_dimg[0].

Y ou can verify that your reader’ s idea of the size of thistype is consistent with

TotalView by checking that the value of the n_bytesfield of the header matches
the product of the size of the type and the total number of array elements.

258 TotaView User's Guide



CHAPTER 10:
Troubleshooting

This chapter describes how to solve common problems that you might encounter
while using Total View. Refer to Table 29.

Table29. Symptoms and Solutions

Symptom Possible Solutions

Windowsdon't appear or operate * Your DISPLAY environment variableis not set
correctly correctly.

» Theresource"“totalview* useTransientFor: { on| off}” on
page 281 isnot set correctly. Changeit from on to off, or
from off to on.

» Start Totalview with the —grab command-line option.
» Usethexhost + command to allow all hoststo access
your display.

Pressing Control-Cinanxterm  « Start TotalView with the—ignore _control_c or —icc
window causes TotalView to exit command-line option.

Source code doesn’t appear in » Set the search path for directories with the Set Search

source code pane Directory (d) command in the process window.

License manager does not e SettheLM_LICENSE_FILE environment variable to

operate correctly the pathname of the TotalView license file. See the
Total View Installation and Administration Guide for
details.

TotalView User's Guide 259



CHAPTER 10: Troubleshooting

Table29. Symptoms and Solutions (Continued)

Symptom

Possible Solutions

Fatal error: Checkout ... failed

Out of memory error

Error creating new process

Error launching process or
Attempt to delete the target of an
unbound process

Check thevalue of the LM_LICENSE_FILE
environment variable. Make sure the value ends with the
string license.dat.

Make sure the TotalView license manager Imgrd is
running on the license manager host machine. The name
of thismachineislisted in the SERVER line of your
license.dat file.

Make surethat thelmgrd that isrunning matchesthe one
which came with your TotalView distribution.

Increasethe swap space on your machine. For details, see
“Swap Space” on page 324.

Increase the datasize limit in the C shell. Usethe C
shell’ s limit command, such as:

%limt datasize unlimted

Increasethe swap space on your machine. For details, see
“Swap Space” on page 324.

Increase the number of process slotsin your system. See
your operating system documentation for details.

Check the xterm window to seeif the execve() call
failed, and if it did, set the PATH environment variable.

Make sure that the /proc filesystem is mounted on your
system. For details, see “Mounting the /proc File
System” on page 323.

Run your program at the UNIX command line prompt to
seeif it will load and start executing. When it passesthis
test, you can run Total View on your program to debug it.

If the operating system can't load your program and start
it, make sure your program is built for the machine you
are debugging on.

260 TotaView User's Guide



Troubleshooting

Table29. Symptoms and Solutions (Continued)

Symptom

Possible Solutions

When debugging HPF programs,
HPF source code does not appear
in the process window; only f77
code appears.

Program behaves differently
under TotaView's control

The TotalView server, tvdsvr,
fails to start on aremote node.

X resources are not recognized

Single stepping is slow or
TotalView is slow to respond to
breakpoints

When compiling HPF program be sure to set both the—g
and —-Mtotalview flags when both compiling and linking
your programs.

Make sure your program does not setuid or exec another
program which does, for example, rsh. Normally, the
operating system will not alow a debugger to debug a
setuid executable nor allow a setuid system call whilea
program is being debugged. Often these operations fail
silently. To debug setuid programs, login as the target
UID before starting TotalView.

TotalView usesthe SIGSTOP signal to stop processes.
On most UNIX systems, system calls can fail with the
errno set to EINTR when the process receives a
SIGSTOP signal. Y ou heed to change your code so that
it handlesthe EINTR failure. For example:

do {

n = read(fd, buf, nbytes);
} while (n < 0 & errno == EINTR);

Re-edit the server launch command field, click OK, and
launch the server again. For information, see “ Starting
the Debugger Server for Remote Debugging” on

page 64.

Use the xrdb command (part of the X Window System)
to display the current X resources:
xrdb -query
Use the xrdb command to load your X resources:
xrdb -1 oad $HOVE/ . Xdef aul ts

Read the xrdb manual page for more information.

Close some of the variable windows that you have open.

The global variables window is open and has alarge
number of variables. Close the global variables window.

TotalView User's Guide 261



CHAPTER 10: Troubleshooting

Table29. Symptoms and Solutions (Continued)

Symptom Possible Solutions
Other fatal error or * Report this problem. See “Reporting Problems” on
Internal error in TotalView pageiv.

262 TotaView User's Guide



CHAPTER 11:
X Resour ces

Thischapter providesreferenceinformation about the X Window Systemresources
that you can use to customize TotalView or the TotalView Visuaizer. You can
usetheseresourcesinyour X resourcesfiles(suchas.Xdefaultson UNIX systems
or decw$sm_general.dat on VMS systems).

For information on X resourcesfiles, refer tothe X Window System documentation
that came with your machine or the X Window System User’s Guide, by O’ Reilly
& Associates (ISBN 1-56592-015-5).

On most UNIX systems, you load your X resources file using the xrdb command
(part of the X Window System executables). For example:

% xrdb -oad $HOM E/.Xdefaults

The default value for each resource in this chapter is shown in bold.

TotalView User's Guide 263



CHAPTER 11: X Resources

Window
L ocations

TotalView X Resources

Y ou can override some of the resources with command-line options for the
totalview command, asdescribed in“ Total View Command Syntax” on page 287.

Note:  You can specify any of the following X resources on the
command line using the “—Xresource=value” command line
option specified on page 288. For example, to set
totalview* stopAll to false, you could specify the command
line option—stopAll=false. Notethat the string “ total view*”
is omitted from the command line

Values for the location of windows are expressed as.
=widthxheight+x+y

wherewidthisthewidth of thewindow in pixels, height isthe height of thewindow
in pixels, x is the distance from the upper-left corner of the window to the left
screen edgein pixels, andyisthedistance from the upper-1eft corner of thewindow
to the top screen edgein pixels. A value of -1 for x or y indicates that the window
should be centered in the screen with respect to the x-axisor y-axis. If desired, you
can express X or y as negative numbers to indicate the distance from the lower-
right corner of the window to the bottom screen edge or right screen edge instead
of the distance from the upper-left corner. A value of zero (0) indicates that
TotalView should use the default value. Also, you can supply just the size (width
and height), and TotalView will use the default location (x and y) with it.

Asanexampl e, theexpression =0x0-1+20usesthedefault width and height, centers
the window horizontally, and places the window 20 pixels down from the top of
the screen. The expression =330x120+20-20 makes the window 330 pixels wide
by 120 pixelshigh and placesthe window 20 pixelsfrom theleft edge of the screen
and 20 pixels up from the bottom edge of the screen.

totalview* arrowBackgroundColor: color

Sets the background (outline) color of PC arrow to color.

Default: black

264 TotaView User's Guide



TotaView X Resources

totalview* arrowForegroundColor: color
Sets the foreground (inner) color of PC arrow to color.

Default: yellow2

totalview* autoL oadBreakpoints. {true | false}
If true (default), automatically load action points from the file
filename.TVD.breakpoints. If false, you usethe STOP/BARR/EVAL/GI ST ->
Load All Action Points command in the process window to load action points.

Override with: —Ib option (overrides false)
—nlb option (overridestrue)

totalview* autoRetraceAddresses: {on | off}
If on (default), TotalView will retrace the sequence of dive operations performed
in avariable window and recompute a new address for the variable. If off, does
not retrace addresses.

totalview* autoSaveBreakpoints: {true | false}
If false (default), do not automatically save action points to an action pointsfile
whenyouexit. YouusetheSTOP/BARR/EVAL/GI ST ->SaveAll Action Points
command in the process window to save action points.
Override with: —sb option (overrides false)
—nsb option (overridestrue)
totalview* backgroundColor: color
Sets the general background color to color.
Default: white
totalview*barrier ForegroundColor: color

Sets the color of the barrier point icon.

Default: blue

TotalView User's Guide 265



CHAPTER 11: X Resources

totalview* barrier FontForegroundColor: color
Setsthe color of thefont used to show theH and Hold indicatorsfor held processes.

Default: blue

totalview*barrier StopAll: {true| false}
Same as totalview* processBarrier StopAllRelatedPr ocessesWhenBr eakpoint
Hit.

totalview*blindMouse: {on | off}
If on (default), allow “ mouseahead,” thequeuing of mouseclicks(similar totyping
ahead in ashell). If off, successive mouse clicks are ignored until TotalView
responds to the first mouse click.

totalview* break FontFor egroundColor: color
Sets the color of “B” state to color.

Default: orange

totalview* breakpointWindL ocation: =widthxheight+x+y
Specifies placement of the first action points window.

Default:
width | height | x ly
columns(70) |line(12) |335 |10

totalview* buttonBackgroundColor: color
Sets the button background color to color. Defaults to the background color.

totalview* buttonForegroundColor: color
Sets the button foreground color to color. Defaults to the foreground color.

266 TotaView User's Guide



TotaView X Resources

totalview* chaseM ouse: {on | off}
If on (default), display dialog boxes at the location of the mouse cursor. If off,
display dialog boxes centered in the upper third of the screen.

Override with: —chase option (overrides off)
—no_chase option (overrides on)

totalview* compilerVars. {true | false}
AlphaDigital UNIX and SGI only. If false (default), TotalView does not show
variables created by the Fortran compiler. If true, TotalView shows variables
created by the Fortran compiler and the variables in the user’s program.

Some Fortran compilers (Digital f90/f77, SGI 7.2 compilers) output debug
information which describes variables that the compiler itself has invented for
purposes such as passing the length of character* (*) variables. By default
TotalView suppressesthe display of these compiler generated variables, however
you can set total view* compiler Var stotrueto causesuch variablesto bedisplayed.
This could be useful if you arelooking for acorruption of arun time descriptor or
are writing a compiler.

Override with: —compiler_vars option (overrides false)
—no_compiler_varsoption (overridestrue)

totalview* compileExpressions: {true | false}
AlphaDigital UNIX and IBM AlX operating systems only. If true (default),
TotalView enables compiled expressions. If false, TotalView disables compiled
expressions and interprets them instead.

totalview* conditionVariablel nfowindL ocation: =widthxheight+x+y
Specifies placement of the first condition variable information window.

Default:
width | height | x ly
columns(75) | lines(15) |360 [300

totalview* cTypeStrings. {true | false}
If false (default), use Total View’ stype string extensions when displaying thetype
strings for arrays. If true, use C type string syntax when displaying arrays.

TotalView User's Guide 267



CHAPTER 11: X Resources

totalview*datawindL ocation: =widthxheight+x+y
Specifies placement of the first variable window.

Default:
width | height | x ly
columns(72) | max (205, linex(15)) |-80  [320

totalview* displayAssembler Symbolically: {on | off}
If off (default), display Assembler locations as hexadecimal addresses. If on,
display Assembler locations as “label +offset.”

totalview* DPVM Debugging: {true | false}
Digital UNIX only.
If false (default), disables support for debugging the Digital UNIX implementation
of Paralel Virtual Machine (DPVM) applications. If true, enables support for
debugging DPVM applications.
Override with: —dpvm option (overrides false)

—no_dpvm option (overridestrue)

totalview*editor LaunchString: command_string
Setsthe editor launch command string to the specified value. Refer to “Changing
the Editor Launch String” on page 122 for more information on the format of
command_string.
Default: xterm —e %E +%N %S

totalview* error FontForegroundColor: color
Setsthe color of “E”, “Z”, and “?” states to color.
Default: red

totalview* evalForegroundColor: color

Sets the color of the EVAL action point signsto color.

Default: orange

268 TotaView User's Guide



TotaView X Resources

totalview*evalWindL ocation: =widthxheight+x+y
Specifies placement of the first expression evaluation window.

Defaullt:
width | height | x ly
columns(83) | lines(30) + 2 |-1 |10

totalview* eventL ogWindL ocation: =widthxheight+x+y
Specifies placement of the event log window.

Default:
width | height | ly
columns(75) | lines(20) |-75  |-50

totalview*font: fontname

Specifiesthe font used by the Tota View debugger. Use the X Windows supplied
application xlsfonts to list the names of available fonts.

Default: fixed
totalview*foregroundColor: color
Sets the general foreground color (i.e., the text color) to color.
Default: black
totalview* frameOffsetX: n
Sets the horizontal placement offset between windows of the same type, as
TotalView placesthem on the screen. Thisvalueisadded to the default value used

by TotalView. If you are using TotalView title bars, use the default.

Default: O

TotalView User's Guide 269



CHAPTER 11: X Resources

totalview*frameOffsatY: n
Setsthevertical placement offset between windowsof thesametype, asTotal View
places them on the screen. This value is added to the default value used by
TotalView. If you are using TotalView title bars, use the default.

Default: O

totalview* globalsWindL ocation: =widthxheight+x+y
Specifies placement of the global variables window.

Default:
width | height | x ly
columns(62) | max (205, linex(15)) |-80 |10

totalview* global Typenames:. {true | false}
If true (default), specifiesthat Total View can assumethat type names are globally
unique within a program and that all type definitions with the same name are
identical. In C++, thestandard assertsthat thismust betruefor standard conforming
code.

If thisoptionistrue, TotalView will attempt to replace an opaquetype (struct foo
*p;) declared in one module, with an identically named defined type (struct foo {
... };) inadifferent module.

If TotalView hasread the symbolsfor the modul e containing the non-opagque type
definition, then when displaying variables declared with the opague type,
TotalView will automatically display the variable using the non-opague type
definition.

If false, specifies that Total View cannot assume that type names are globally
unique within aprogram. Y ou should specify thisoption if your code has multiple
different definitions of the same named type, since otherwise TotalView islikely
to pick the wrong definition to substitute for an opague type.

Override with: —global_types option (overrides false)
—no_global_typesoption (overridestrue)

270 TotaView User's Guide



TotaView X Resources

totalview*grabM ouse: {on | off}
If off (default), do not force keyboard input to dialog boxes. If you're running
TotalView with awindow manager that is operating in “ click-to-type” mode, you
should set thisresource to “on” or use the —grab command-line option.

totalview* helpwindL ocation: =widthxheight+x+y
Specifies placement of the help window.

Default:

width | height | x ly
min(screen_width - 10, | min(screen_height - 20, ‘ -1 ‘ -20
columns(84)) 606)

totalview* hpf: {true | false}
If true (default, if HPF debugging has been licensed), enables debugging at the
HPF source level.

Setting this X resourceto false, causes Total View toignore .stx and .stb files, and
therefore to debug HFP code at the intermediate (Fortran 77) level.

Override with: —hpf option (overrides false)
—no_hpf option (overridestrue)

totalview*hpfNode: {true | false}
If false (default), the node on which an HPF distributed array element resides is
not displayed in the process window.

The node display can be toggled in each variable window using the Toggle Node
Display option in the process window menu.

Override with: —hpf_node option (overrides false)

—no_hpf_node option (overrides true)

totalview*inverseVideo: {true | false}
If true, enables inverse video display. If false (default), disables inverse video

display.

TotalView User's Guide 271



CHAPTER 11: X Resources

totalview*kccClasses. {true | false}
If set to true, (default) TotalView will convert structure definitions output by the
KCC compiler into classes that show base classes, and virtual base classesin the
same way as other C++ compilers. When set to false, TotalView will not convert
structure definitions output by the KCC compiler into classes. Virtual bases will
show up as pointers, rather than the data.

Unfortunately, the conversion has to be done by textual matching of the names
givento structure members, so can it be confused if you have structure component
names that look to TotalView like KCC processed classes. However, the
conversion is never performed unless TotalView believes that the code was
compiled with KCC, because Total View has seen one of the tag stringsthat KCC
outputs, or because the user has asked for the KCC name demangler to be used.
Also all of the recognized structure component names start with “__ ", and,
according to the C standard, user code should not contain names with this prefix.

Note that under some circumstancesit is not possible to convert the original type
names because there is no available type definition. For example, it may not be
possible to convert “struct SO _foo” to “struct foo”, so in this case the

“__ SO _foo” typewill be shown. Thisisonly acosmetic problem. (The®__SO__”
prefix denotes a type definition for the non-virtual components of a class with
virtual bases).

Since KCC outputs no information on the accessibility of base classes (“ private”,

“protected”, “public”), TotalView is unable to provide thisinformation.

totalview* mainHSplit: n
Same as totalview*mainH Split1.

totalview* mainHSplitl: n
Controlsthe height of the stack trace, stack frame and source panesin the process
window. n specifies the pixel location of the top of the source pane.

Default: (window_height/3)

272 TotaView User's Guide



TotaView X Resources

totalview* mainHSplit2: n
Controlsthe height of the source pane, thread list and action point listin the process
window. n specifiesthe pixel location of the top of the thread list and action point
list panes.

Default: A function of window_height: Triesto give 5 linesin the thread list and
action point list panes, and the remainder, at least 20 lines, to the source pane. If
it cannot give the source pane at least 20 lines, it shrinks the thread list and action
point list panesto zero.

totalview* mainV Split: n
Same as totalview*mainV Split1.

totalview* mainV Splitl: n
Controlsthelocation of the partition between the stack trace and stack frame panes
in the process window. A value of —1 centers the partition.

Default: (window_width/2) — 20
totalview* mainVSplit2: n
Controls the location of the partition between the thread list and action point list

panes in the process window. A value of —1 centers the partition.

Default; (window_width/2) — 20

totalview* mainWindL ocation: =widthxheight+x+y
Specifies placement of the first main process window.

Default:
width | height | x ly

min(columns(94), max(456, lines(45)) 10 -150
screen_width - 5)

totalview* menuArrowForegroundColor: color
Sets the menu arrow color to color.

Default: blue or green

TotalView User's Guide 273



CHAPTER 11: X Resources

totalview* menuCache: {on | off}
If off (default), disables menu caching. Not all X servers support menu caching.
If your X server doesn’t and you have menu caching enabled (on), TotalView
menus appear blank the second and subsequent times you display them.

totalview* messageStateWindL ocation: =widthxheight+x+y
Specifies the placement of the first message state window.

Default:
width | height | x ly
columns(72) | max (205, linex(15)) |-80  [330

totalview* modulesWindL ocation: =widthxheight+x+y
Specifies the placement of the first modules window.

Defaullt:
width | height | x ly
columns(62) | max (205, linex(15)) |-75 |15

totalview* mouseCur sor BackgroundColor: color
Sets the mouse cursor background (mask) color to color.

Default: white or black

totalview* mouseCur sor For egroundColor : color
Sets the mouse cursor foreground (inner) color to color.

Default: red

totalview* multForegroundColor: color
Setsthe color of MULT action point signsto color.

Default: purple

totalview* mutexWindL ocation: =widthxheight+x+y
Specifies placement of the first mutex information window.

274 TotaView User's Guide



TotaView X Resources

Default:
width | height | x ly
columns(75) | lines(15) |350 [300

totalview*overrideRedirect: {on | off}
If off (default), do not create TotalView windows using the override redirect
attribute. If on, use the override _redirect attribute, which does not give the X
window manager a chance to intercept requests.

totalview*ownTitles: { on | off}
If on (default), place title bars on Tota View windows. If your window manager
isareparenting one (placesits own title bars on windows), turn off this resource.

totalview* popAtBreakpoint: { on | off}
If on, setsthe Open (or raise) process window at breakpoint checkbox to be
selected by default. If off (default), setsthat checkbox to be deselected by default.
See “Handling Signals’ on page 48.

Override with: —pop_at_breakpoint option (overrides off)
—Nno_pop_at_breakpoint option (overrides on)

totalview* popOnError: {on | off}
If on (default), setsthe Open (or raise) processwindow on error checkbox to be
selected by default. I off, setsthat checkbox to be desel ected by default. “Handling
Signals’ on page 48.

Override with: —pop_on_error option (overrides off)
—No_pop_on_error option (overrides on)

totalview* processBarrier StopAll: {true| false}
Same as totalview* processBarrier StopAllRelatedPr ocessesWhenBr eakpoint
Hit.

TotalView User's Guide 275



CHAPTER 11: X Resources

totalview* processBarrier StopAllRelatedPr ocessesWhenBreakpointHit: {true | false}
If true (default), the default setting for process barrier breakpoints stopsall related
processes. If false, the default setting for process barrier breakpoints does not stop
all related processes. See “Process Barrier Breakpoints” on page 201.

totalview* pU“RI htMenus:. {on | off
g
If off (default), use walki ng menus. If on, use pull-right menus.

totalview* pvmDebugging: {true | false}
If false (default), disables support for debugging the ORNL implementation of
Parallel Virtual Machine (PVM) applications. If true, enables support for
debugging PVM applications.

Override with: —pvm option (overrides false)
—nopvm option (overrides true)

totalview*rootWindL ocation: =widthxheight+x+y
Specifies placement of the root window.

Default:

width | height | x ly
min(screen_width - 10, [ max(150, lines(12)) ‘ 10 ‘ 10
columns(60))

totalview* runningFontForegroundColor: color
Setsthe color of “R”,*S’, “M”, and “1” statesto color.

Default: green

totalview* scrollLineSpeed: n
Specifies the maximum number of lines per second that TotalView scrolls when
you click on arrows at the top and bottom of the scroll bars. To have Total View

scroll asfast as possible, set nto 0.

Default: 40

276 TotaView User's Guide



TotaView X Resources

totalview* scrollPageSpeed: n
Specifies the maximum number of pages per second that Total View scrollswhen
youclick aboveor below the elevator box insidethe scroll bars. Tohave Total View
scroll asfast as possible, set nto 0.

Default: 5

totalview* sear chCaseSensitive: {on | off}
If off (default), searching for stringsis not case-sensitive. If on, searches are case-
sensitive.

totalview* sear chPath: dirl[,dir2,...]
Specifiesalist of directories for the debugger to search when looking for source
and object files. Thisresource servesthesamepurposeasthe Set Sear ch Directory
(d)command in the process window (see “ Setting Search Paths’ on page 52). If
you use multiple lines, place abackslash (\) at the end of each line, except for the
last line.

totalview* server LaunchEnabled: {true | false}
If true (default), TotalView automatically launches the Total View Debugger
Server (tvdsvr) when you start to debug a remote process.

totalview* server LaunchString: command_string
Specifies the command string that Total View uses to automatically launch the
TotalView Debugger Server (tvdsvr) when you start to debug a remote process.
command_string is executed by /bin/sh. By default, TotalView uses thersh
command to start the server, but you can use any other command that can invoke
tvdsvr on aremote host. If you have no command available for invoking aremote
process, you can’t automatically launch the server; therefore, you should set
totalview* server LaunchEnabled to false.

Default:
rsh %R -n"cd %D && tvdsvr —callback %L —set_pw %P —verbosity % V"

TotalView User's Guide 277



CHAPTER 11: X Resources

totalview* server LaunchTimeout: n
Specifies the number of seconds that Total View waits to hear back from the
TotalView Debugger Server (tvdsvr) that it launched successfully. The number
of seconds must be between 1 and 3600 (1 hour).

Default: 30

totalview* shareActionPoint: {true | false}
Same as totalview* shar eActionPointl nAllRelatedPr ocesses.

totalview* shar eActionPointl nAllRelatedProcesses: {true | false}
If true (default), the default setting for action points will be to sharethemin all
related processes. If false, the default setting for action pointswill be to not share
them in all related processes. See “Breakpoints for Multiple Processes’ on
page 197.

totalview*signalHandlingM ode: action_list
Modifies the way in which TotalView handles signals. An action_list consists of
alist of signal_action descriptions, separated by spaces:
signal_action[signal_action] ...

A signal_action description consists of an action, an equal sign (=), and alist of
signas.

action=signal_list

Anaction can beone of thefollowing: Error, Stop, Resend, or Discar d. For more
information on the meaning of each action, refer to“Handling Signals’ on page 48.

A signal_listisalist of one or more signal specifiers, separated by commas:
signal_specifier[,signal_specifier] ...

A signal_specifier can be asignal name (such as SIGSEGV), asignal number

(such as 11), or astar (*), which specifies al signals. We recommend using the

signal namerather thanthe number because number assignmentsvary acrossUNI X
versions.

278 TotaView User's Guide



TotaView X Resources

The following rules apply when specifying an action_list:
» If you specify an actionfor asignal in an action_list, TotalView changesthe
default action for that signal.

» If you do not specify asignal in the action _list, TotalView does not change
its default action for the signal.

» If you specify asignal that does not exist for the platform, Total View ignores
it.
» If you specify an action for asignal twice, TotalView uses the last action
specified. In other words, Total View applies the actions from left to right.
If you need to revert the settings for signal handling to TotalView’ s built-in
defaults, use the Defaults button in the Set Signal Handling M ode dialog box.

For example, to set the default action for the SIGTERM signal to Resend, you
specify the following action list:

“Resend=SIGTERM”

As another example, to set the action for SIGSEGV and SIGBUS to Error, the
actionfor SIGHUP and SIGTERM to Resend, and all remaining signalsto Stop,
you specify the following action list:

“Stop=* Error=SIGSEGV,SIGBUS Resend=SIGHUP,SIGTERM”

This action list shows how TotalView applies the actions from left to right. The
action list first setsthe action for all signalsto Stop. Then, the action list changes
the action for SIGSEGV and SIGBUS from Stop to Error and the action for
SIGHUP and SIGTERM from Stop to Resend.

totalview* sour cePaneT abWidth: n
Setsthewidth of thetab character that isdisplayedin the source pane. For example,
if your source file uses atab width of 4, set nto 4.

Default: 8

TotalView User's Guide 279



CHAPTER 11: X Resources

totalview* spellCorrection: {verbose | brief | none}
When you use the Function or File... or Variable... commands in the process
window or edit atype string in avariablewindow, the debugger checksthespelling
of your entries. By default (ver bose), the debugger displaysadialog box beforeit
corrects spelling. You can set this resource to brief to run the spelling corrector
silently. (The debugger makes the spelling correction without displaying itin a
dialog box first.) You can also set this resource to none to disable the spelling
corrector.

totalview* stopAll: {true | false}
Same as totalview* stopAllRelatedPr ocessesWhenBreakpointHit.

totalview* stopAllRelatedPr ocesseswWhenBr eakpointHit: {true | false}
If true (default), the default setting for breakpoints will stop all related processes.
If false, the default setting for breakpoints will not stop all related processes. See
“Breakpoints for Multiple Processes’ on page 197.

totalview* stopFor egroundColor: color
Sets the color of STOP and ASM action point signs to color.
Default: red
totalview* stoppedFontFor egroundColor: color
Sets the color of “T” state to color.
Default: blue or yellow2
totalview*useColor: {true | false}
If true (default), enables Total View use of color. If false, disablesal use of color
and display using monochrome black on white. This option overrides al other

color-related options.

Override with: —color option (overrides false)
—no_color option (overridestrue)

280 TotaView User's Guide



TotaView X Resources

totalview*user Threads:. {true | false}

If set to true (default), enables handling of user-level (M:N) thread packages on
systemswheretwo-level (kernel and user) thread scheduling is supported. If set to
false, disable handling of user-level (M:N) thread packages. Disabling thread
support may be useful in situations where you need to debug kernel-level threads,
but in most cases, this option is of little use on systems where two-level thread
scheduling is used.

Override with: —user_threads option (overrides false)
—no_user_threads option (overridestrue)

totalview*useTextColor: {true| false}

If true (default), enables Total View use of text color. If false, disables use of text
color.

Override with: —text_color option (overrides false)
—no_text_color option (overridestrue)

totalview*useTitleColor: {true | false}

If true (default), enables Total View use of title color. If false, disables use of title
color.

Override with: —title_color option (overrides false)
—no_title color option (overridestrue)

totalview*useTransientFor: {on | off}

totalview*verbosity:

If off, use “override redirect” windows, which don’t let you use the window
manager to perform operations, such as raise and lower, on dialog boxes. If you
use an advanced window manager, you can use the on option (default) to specify
that the debugger use “transient-for” type windows, which allow you to use the
window manager to perform operationson dialog boxes. If you' reusing an X11R4
or more recent server and window manager, you should usetheon option. If you're
using the DECstation’s DEC window manager, you should use the off option.

{silent | error | warning | info}
Setsthe verbosity level of TotalView generated messages.

TotalView User's Guide 281



CHAPTER 11: X Resources

Default: info

totalview* visualizer LaunchString: command_string
Specifies the command string that Total View uses to launch the visualizer when
you first visualize something. Thisis a shell command line, so you can use the
shell redirection command to output visualization data-setsto afile (e.g. “cat >
your_file").

Default: visualize

totalview*visualizer LaunchEnabled: {true | false}
If true (default), Total View automatically launches the visualizer when you first
visualize something. If false, visualization is disabled.

totalview*visualizerM axRank: n
Specifiesthe default value used in the*M aximum per missiblerank” field of the
Visualizer Launch Window dialog box. Thisfield sets the maximum rank of the
array that TotalView will export to the visualizer. TotalView’ s default visualizer
cannot visualize arrays of rank greater than two, however if you are using another
visualizer, or just dumping binary data, you can set the limit here.

Default: 2

totalview*warnStepThrow: {true | false}
If set to true (default), and your program throws an exception during a Total View
single-step operation, you will be asked if you wish to stop the single-step
operation. The process will be left stopped at the C++ run time library’ s “throw”
routine. If set to false, then Total View will not catch C++ exception throws during
single-step operations, which may cause the single-step operation to lose control
of the process, and cause it to run away.

282 TotaView User's Guide



Visualizer X Resources

Visualizer X Resources

The TotalView visualizer uses alarge number of X resourcesthat are set up inits
application defaultsfile. The X resources documented are a subset of those found
in the application defaultsfile asthey are the only onesthat may be customized to
your preferences. Setting them in your own X resources file overrides the
application defaultsfile.

Thedefault valuesof the X resourcesarelisted here shown either in abold typeface
inalist of alternative values, or separately if there can be arange of values. They
are the settings in the applications defaults file asit is shipped. Y our site
administrator can edit thisfileto set the site defaults, therefore your site may have
different defaults.

Visualize* data* pick_message.background: color
Sets the color of the pick popup window.

Default: light yellow

Visualize*directory*auto_visualize.set: {1 |0}
Setstheinitial state of the auto-visualize option in the directory window. If set (1),
when a new data-set is added to the list, it will be visualized automatically using
an appropriate method. If cleared (0), the new data-set will not be displayed
automatically, and you will have to choose a visualization method for it.

Visualize*directory.width: width

Visualize*directory.height: height
Sets the initial width and height of the directory window.

Default: width=300, height=100
Visualize* graph.width: width
Visualize*graph.height: height
Setstheinitial width and height of the graph data window.

Default: width=400, height=400

TotalView User's Guide 283



CHAPTER 11: X Resources

Visualize*graph*lines.set: {1 |0}
Setstheinitia state of thelines option in the graph window. When set (1), graphs
are drawn with lines connecting the data points.

Visualize* graph*points.set: {1 | O}
Setstheinitia state of the pointsoption in the graph window. When set (1), graphs
are drawn with markers on each data point.

Visualize* surface.width: width

Visualize* surface.height: height
Setstheinitial width and height of the surface data window.

Default: width=400, height=400

Visualize* surface*mesh.set: {1 |0}
Setstheinitial state of the mesh option in the surface window. When set (1), the
axis grid is projected onto the surface.

Visualize* surface*shade.set: {1 | O}
Setstheinitia state of the shade option in the surface window. When set (1), the
surface is shaded.

Visualize* surface* contour .set: {1 |0}
Setstheinitia state of the contour option in the surface window. When set (1),
contours are displayed on the surface.

Visualize* surface*zone.set: {1 |0}
Setstheinitial state of the zone option in the surface window. When set (1), the
surfaceis colored according to the value.

Visualize* surface*auto reduce.set: {1 | O}
Setstheinitia state of the auto-reduce option in the surface window. When set (1),
large data-sets are reduced by averaging to speed display.

284 TotaView User's Guide



Visualizer X Resources

Visualize* surface*xrt3dZoneM ethod: {zonecontour s | zonecells}
Specifies how the surface is colored. When set to zonecontour s, the surfaceis
colored according to its contours. When set to zonecells, each cell inthe mesh is
colored based on the average value in the cell.

Visualize* surface*xrt3dViewNormalized: {1 |0}
When set (1), theview of the data-set (beforezooming or trangl ation) ismaximized
to fit the window. Interactive rotation when this resource is set will look “jerky”
but will ensure no portion of the display is clipped. When thisresourceis cleared
(0), dynamic rotation will be smooth, but parts of the display (e.g., axes) may be
clipped at some viewing angles.

Visualize* surface* xrt3dXMeshFilter: n
Visualize* surface*xrt3dY MeshFilter: n

Specifies how to display the surface mesh. Every nth mesh line will be displayed,
where N must be an integer greater than or equal to 0. When setto 0, avalueis
calculated automatically.

Default: 0

TotalView User's Guide 285



CHAPTER 11: X Resources

286 TotaView User's Guide



CHAPTER 12

TotalView Command Syntax

Thischapter summarizesthe syntax of thetotalview command. For thefull syntax,
use the man totalview command to view the online version.

Synopsis totalview [filename [corefil€]] [options]

Descri pt ion TheTota View debugger isasource-level debugger with agraphicinterface (based
on the X Window System) and features for debugging distributed programs,
multiprocess programs, and multithreaded programs. Y ou need a workstation or
terminal running the X Window System to use TotalView. TotalView isavailable
on anumber of different platforms.

Arguments

filename

corefile

Specifies the pathname of an executable to be
debugged. The name can be an absolute or relative
pathname. The executable must be compiled with
debugging symbols turned on, normally the —g
compiler switch. Any multiprocess programsthat call
fork(), vfork(), or execve() should be linked with the
dbfork library.

Specifiesthename of acorefile. Specify thisargument
in addition to filename when you want to examine a
corefilewith TotalView:

totalview filename corefile [ options]

TotalView User's Guide 287



CHAPTER 12: TotalView Command Syntax

Options If you specify mutually exclusive options (such as—dynamic and -no_dynamic)
on the same command line, the last option listed is used. Some of these options
override Total View X resources described in “X Resources’” on page 263. In
options that contain underscores (_), you can usually use the option without the
underscores. For example, —-nodynamic is the same as—no_dynamic, and
—arrowbgcolor isthe sameas—arrow_bg_color.

Note:  The option, —Xresource=value, allows you to set the X
resource Xresour ce to value from the command line. For
example, to set totalview* stopAll tofalse, you could specify
thecommand line option—stopAll=false. Notethat the string
“totalview*” is omitted from the command line. X resource
values set from the command line override settings in your
X resourcefile. For acompletelist of X resources, see Chapter
11, “X Resources,” on page 263.

—aargs Passes all subsequent arguments (specified by args) to
the program specified by filename. Thisoption must be
the last one on the command line.

—arrow_bg_color color
Sets the background (outline) color of PC arrow to
color.

Default: black

—arrow_color color Setsthe foreground (inner) color of PC arrow to color.

Default: yellow2

—background color Sets the general background color to color.

Default: white
—bg color Same as —background.

—barrier_color color
Sets the color of the process barrier breakpoint icon.

Default: blue

288 TotaView User's Guide



totalview Options

—barrier_font_color color

—barr_stop_all

—no_barr_stop_all

—break_color color

Setsthe color of the font used to show the H and Hold
indicators for held processes.
Default: blue

(Default) Enables process barrier breakpoints to stop
all related processes.

The processbarrier breakpoint doesnot stop all related
processes.

Sets the color of “B” state to color.

Default: orange

—button_bg_color color

Sets the button background color to color.

Default: background color

—button_fg_color color

—chase

—no_chase
—color

—no_color

-nc

—compiler_vars

Sets the button foreground color to color.

Default: foreground color

(Default) Displays dialog boxes at the mouse pointer.
To display dialog boxes centered in the upper third of
the screen, use —no_chase.

Displaysdialog boxescenteredin the upper third of the
screen.

(Default) Enables Total View use of color.

Disablesall use color, and display using monochrome
black on white. This option overrides all other color-
related options.

Same as—o_color.

Alphaand SGI only. Show variables created by the
Fortrancompiler, aswell asthoseintheuser’ sprogram.

TotalView User's Guide 289



CHAPTER 12: TotalView Command Syntax

—no_compiler_vars (Default) Do not show variables created by the Fortran

—dbfork

—no_dbfork

compiler.

Some Fortran compilers (Digital f90/f77, SGI 7.2
compilers) output debug information which describes
variables that the compiler itself has invented for
purposes such as passing the length of character* (*)
variables. By default, Total View suppressesthedisplay
of these compiler generated variables.

However you can specify the —.compiler_vars option
or set thetotalview* compilerVars X resourceto true
to cause such variables to be displayed. This could be
useful if you arelooking for acorruption of aruntime
descriptor or are writing acompiler.

(Default) Catches the fork(), vfork(), and execve()
system callsif your executable islinked with the
dbfork library.

Does not catch fork(), vfork(), and execve() system
callsevenif your executableislinked with the dbfork
library.

—debug_file consoleoutputfile

Redirects TotalView console output to afile named
consol eoutputfile.

Default: All TotalView console output iswritten to
stderr.

—demangler =compiler

Overridesthe C++ demangler and mangler TotalView
uses by default. Table 30 lists override options.

Table30. C++ Demangling Command Line Options

Option M eaning
—demangler =cset IBM xIC C++
—demangler=dec Digital C++
—demangler=gnu GNU C++

290 TotaView User's Guide



totalview Options

Table30. C++ Demangling Command Line Options (Continued)

Option

Meaning

—demangler=irix
—demangler =kai
—demangler=spro
—demangler=sun

—demangler =usoft

SGI IRIX C++

KAI KCC C++ 3.2 or greater
SunPro C++ 4.0 or greater
Sun CFRONT C++

MicroSoft C++

—display displayname

—dpvm

—no_dpvm

—dump_core

—-Nno_dump_core

—dynamic

—no_dynamic

Sets the name of the X Windows display to
displayname. For example, —display vinnie:0.0 will
display TotalView on the machine named “vinnie.”

Default: To the value of the DISPLAY environment
variable.

Digital UNIX only: Enables support for debugging the
Digital UNIX implementation of Parallel Virtua
Machine (PVM) applications.

Digital UNIX only: (Default) Disables support for
debugging the Digital UNIX implementation of PVM
applications.

Allows TotalView to dump acorefile when it getsan
internal error. Useful for debugging Tota View itself.

(Default) Doesnot allow Tota View todump acorefile
when it gets an internal error.

(Default) Loads symbols from shared libraries. This
option is available only on platforms that support
shared libraries.

Does not load symbols from shared libraries when
reading dynamically linked executables. Setting this
option can cause the dbfork library to fail because
TotalView might not find the fork(), vfork(), and
execve() system calls.

TotalView User's Guide 291



CHAPTER 12: TotalView Command Syntax

292 TotaView User's Guide

—error_color color

—eval_color color

—ext extension

—font fontname

—fn fontname

—foreground color

—fg color

—global_types

Setsthe color of “E”, “Z", and “?" statesto color.

Default: red

Setsthe color of the EVAL action point signsto color.

Default: orange

Specifies that files with the suffix extension are
preprocessor input files. TotalView already has built-
inextensionsfor C++ (.C, .cpp, .cc, .cxx), Fortran (.F),
lex (I, .Iex), and yacc (.y) files.

Specifies the font to be used by TotalView.

Default: fixed
Same as —font.

Sets the general foreground color (i.e., the text color)
to color.

Default: black
Same as —foreground.

(Default) Specifiesthat TotalView can assume that
type names are globally unique within a program and
that all type definitions with the same name are
identical. In C++, the standard assertsthat this must be
true for standard conforming code.

If thisoption is set, TotalView will attempt to replace
anopagquetype(struct foo* p;) declaredinonemodule,
with an identically named defined type (struct foo{ ...
};) inadifferent module.

If TotalView has read the symbols for the module
containing the non-opagque type definition, then when
displaying variables declared with the opague type,
TotalView will automatically display the variable
using the non-opague type definition.



—no_global_types

—grab

-no_grab

—grab_server

—no_grab_server

—hpf

—no_hpf

—hpf_node

—no_hpf_node

—ignore_control_c

—icc

totalview Options

Specifiesthat Total View cannot assume that type
names are globally unique within a program. Y ou
should specify this option if your code has multiple
different definitions of the same named type, since
otherwise TotalView islikely to pick the wrong
definition to substitute for an opaque type.

Forcesall keyboard input to go to an open dialog box.
Use this option if your window manager uses “click-
to-type” mode.

(Default) Does not force keyboard input to an open
dialog box.

(Default) TotalView will grab the X server when
posting menus.

TotalView will not grab the X server when posting
menus. Useful for taking screen shots of TotalView’s
menus.

(Default) Enables debugging HPF code at the source
level.

Disables debugging HPF source code at the source
level.

Enablesdisplay of nodeonwhichHPFdistributed array
element resides in the process window.

(Default) Disables display of node on which HPF
distributed array element resides in the process
window.

Ignores Control-C and prevents you from terminating
the TotalView process from an xter m window, which
is useful when your program catches the Control-C
signal (SIGINT).

Same as—ignore_control_c.

—Nno_ignore_control_c

—hicc

(Default) Catches Control-C and terminates your
TotalView debugging session. To override this, use
—ignore_control_c.

Same as—no_ignore_control_c.

TotalView User's Guide 293



CHAPTER 12: TotalView Command Syntax

294 TotaView User's Guide

—v
-No_iv

—kcc_classes

—no_kcc_classes

—nmc

Turnsinverse video on.
(Default) Turnsinverse video off.

(Default) Convert structure definitions output by the
KCC compiler into classesthat show base classes, and
virtual base classes in the same way as other C++
compilers. See the description of the X resource
“totalview* kccClasses: {true | false} ” on page 272 for
adescription of the conversion performed by
TotalView.

Do not convert structure definitionsoutput by the KCC
compiler into classes. Virtual bases will show up as
pointers, rather than the data.

(Default) Loads action points automatically from the
filename. TVD.breakpointsfile, providing thefile
exists.

Does not |oad action points automatically from an
action pointsfile.

Turnsonmenu caching. Usethisoptionif your X server
supports menu caching. If menus appear blank the
second and subsequent timesyou display them, your X
server does not support menu caching.

(Default) Turns off menu caching.

—menu_arrow_color color

—message_queue

-mqd

Sets the menu arrow color to color.

Default: blue or green

(Default) Enable the display of MPI message queues
when debugging an MPI program.

Same as—mnessage_queue.

—No_message_queue

-no_maqd

Disable the display of MPI message queues when
debugging an MPI program. This might be useful if a
storecorruption isoverwriting the message queuesand
causing TotaView to become confused.

Same as—N0_message_queue.



totalview Options

—mouse_bg_color color

Sets the mouse cursor background (mask) color to
color.

Default: white or black

—mouse_fg_color color

—mult_color color

—parallel

—no_parallel

—pop_at_breakpoint

Sets the mouse cursor foreground (inner) color to color.

Default: red

Setsthe color of MULT action point sign to color.

Default: purple

(Default) Enable handling of parallel program runtime
libraries such as MPI, PE and HPF.

Disable handling of parallel program runtimelibraries
suchasMPI, PE and HPF. Thisisuseful for debugging
parallel programs asif they were single process
programs.

Setsthe Open (or raise) process window at
breakpoint checkbox to be selected by default. See
“Handling Signals’ on page 48.

—Nno_pop_at_breakpoint

—pop_on_error

—No_pop_on_error

—npr

(Default) Setsthe Open (or raise) processwindow at
breakpoint checkbox to be deselected by default. See
“Handling Signals’ on page 48.

(Default) Setsthe Open (or raise) processwindow on
error checkbox to be selected by default. See
“Handling Signals’ on page 48.

Setsthe Open (or raise) process window on error
checkbox to be deselected by default. See “Handling
Signals’ on page 48.

Use pull-right menus.

(Default) Use walking menus instead of pull-right
menus.

TotalView User's Guide 295



CHAPTER 12: TotalView Command Syntax

296 TotaView User's Guide

—pvm Enables support for debugging the ORNL
implementation of Parallel Virtual Machine (PVM)
applications.

—-Nno_pvm (Default) Disables support for debugging the ORNL

implementation of PVM applications.

—r emote hostname[: portnumber]
Debugs an executabl e that is not running on the same
machine as Total View. For hostname, you can specify
a TCP/IP hostname, such asvinnie, or a TCP/IP
address, such as 128.89.0.16. Optionally, you can
specify aTCP/IP port number for portnumber, such as
:4174. When you specify a port number, you disable
the auto-launch feature. For more information on the
auto-launch feature, see “The Auto-Launch Feature’
on page 64.

— hostname]: portnumber]
Same as-remote.

—running_color color
Setsthe color of “R”,“S’, “M”, and “1” statesto color.

Default: green

—sb Saves action points automatically to an action points
filewhen you exit TotalView. Thefileis named
filename. TVD.breakpoints.

-nsb (Default) Does not save action points automatically to
an action points file when you exit.

—serial device|:options]
Debugs an executabl e that is not running on the same
machine as Total View. For device, specify the device
nameof aserial line, such as/dev/com1. Currently, the
only option you are allowed to specify isthe baud rate,
which defaults to 38400. For more information on
debugging over aseria line, see “Debugging Over a
Serial Line” on page 72.



totalview Options

—signal_handling_mode “action_list”

—shm “action_list”

—stop_all

—no_stop_all

—stop_color color

Modifiestheway inwhich Total View handlessignals.
Y ou must enclose the action_list string in quotation
marks to protect it from the shell. Refer to
“totalview* signalHandlingM ode: action_list” on
page 278 for adescription of the action_list argument.

Same as—signal_handling_mode.

(Default) Setsthe Stop All Related Processes when
Breakpoint Hit checkbox to be selected by default. To
override this option use —no_stop_all. See
“Breakpoints for Multiple Processes’” on page 197.

SetstheStop All Related Processeswhen Breakpoint
Hit checkbox to be deselected by default. See
“Breakpoints for Multiple Processes’” on page 197.

Setsthe color of STOP and ASM action point signsto
color.

Default: red

—stopped_color color

—text_color
—no_text_color
—title_color
—tc
—no_title color
-no_tc

—user_threads

Setsthe color of “T” state to color.

Default: blue or yellow?2
(Default) Turnstext color use on.
Turnstext color use off.
(Default) Turnstitle color use on.
Same as—title color.

Turnstitle color use off.

Same as—no _title color.

(Default) Enable handling of user-level (M:N) thread
packageson systemswheretwo-level (kernel and user)
thread scheduling is supported.

TotalView User's Guide 297



CHAPTER 12: TotalView Command Syntax

298 TotaView User's Guide

—no_user_threads Disablehandlingof user-level (M:N) thread packages.

-verbosity level

Thisoption may be useful in situationswhereyou need
to debug kernel-level threads, but in most cases, this
optionisof littleuseon systemswheretwo-level thread
scheduling is used.

Sets the verbosity level of Total View generated
messages to level, which may be one of silent, error,
war ning, or info.

Default: info



CHAPTER 13:

TotalView Debugger Server
Command Syntax

Synopsis

Description

Thischapter summarizesthe syntax of the Total View Debugger Server command,
tvdsvr, which is used for remote debugging. For more information on remote
debugging, refer to “ Starting the Debugger Server for Remote Debugging” on

page 64.

tvdsvr {—server | —callback hosthame:port | —serial device} [other optiong]

Thetvdsvr debugger server allows Total View to control and debug aprogram on
aremote machine. To accomplish this, thetvdsvr program must run on theremote
machine, and it must have access to the executables to be debugged. These
executables must have the same absol ute pathname as the executable that
TotalView is debugging, or the PATH environment variable for tvdsvr must
include the directories containing the executables.

Y ou must specify either the—server, —callback, or —serial option with the tvdsvr
command. By default, the Total View debugger automatically launches tvdsvr
(known as the auto-launch feature) with the —callback option, and the server
establishes a connection with Total View.

If you prefer not to use the auto-launch feature, you can start tvdsvr manually and
specify the—server option. Be sureto make note of the password that tvdsvr prints
out with the message:

pw = hexnumrhi gh: hexnum ow

TotalView will prompt you for hexnumhigh: hexnumlow later. By default, tvdsvr
automatically generates a password that is used when establishing connections. If
desired, you can use the —set_pw option to set a specific password.

TotalView User's Guide 299




CHAPTER 13: TotalView Debugger Server Command Syntax

To connect to thetvdsvr from Total View, you use the New Program Window and
must specify the hostname and TCP/IP port number, hosthame: portnumber on
which tvdsvr isrunning. Then, Total View prompts you for the password for
tvdsvr.

Options The following options determine the port number and password necessary for
TotaView to connect with tvdsvr.

300 TotaView User's Guide

—callback hostname: port

(Auto-launch feature only) Immediately establishes a
connection with the TotalView debugger that is
running on hostname and listening on port, where
hostname is either a hostname or TCP/IP address. If
tvdsvr cannot connect with TotalView, it exits. If you
specify the—port, —search_port, and —server options
with this option, tvdsvr ignores them.

—debug_file consoleoutputfile

—dpvm

—port number

—pvm

Redirects Tota View Debugger Server console output
to afile named consoleoutputfile.

Default: All console output iswritten to stderr.

Usesthe Digital UNIX implementation of the Parallel
Virtual Machine (DPVM) library process as itsinput
channel and registersitself asthe DPVM tasker.

Note: Thisoption is not intended for users launching
tvdsvr manually. When you enable DPVM support
within TotalView, TotalView automatically uses this
option when it launches tvdsvr.

Sets the TCP/IP port number on which tvdsvr should
communicate with totalview. If this TCP/IP port
number isbusy, tvdsvr doesnot select an alternate port
number (that is, it communicates with nothing) unless
you also specify —search_port.

Default: 4142

Usesthe ORNL implementation of the Parallel Virtual
Machine(PVM) library processasitsinput channel and
registersitself asthe ORNL PVM tasker.



—search_port

tvdsvr Options

Note: Thisoption is not intended for users launching
tvdsvr manually. When you enable PVM support
within TotalView, TotalView automatically usesthis
option when it launches tvdsvr.

Searches for an available TCP/IP port number,
beginning with the default port (4142) or the port set
withthe—port option and continuing until oneisfound.
Whentheport number isset, tvdsvr displaysthechosen
port number with the following message:

port = nunber

—serial device|:options]

—server

Waitsfor aserial line connection from Total View. For
device, specify the device name of aserial line, such as
/dev/com1. Currently the only option you are allowed
to specify isthebaud rate, which defaultsto 38400. For
more information on debugging over aserid line, see
“Debugging Over a Serial Line” on page 72.

Listens for and accepts network connections on port
4142 (default). Touseadifferent port, you must specify
the —port or —search_port options. To stop tvdsvr
from listening and accepting network connections, you
must terminateit by pressing Control-C in theterminal
window from which it was started or by using the kill
command.

—set_pw hexnumhigh: hexnumlow

Setsthe password to the 64-bit number specified by the
two 32-bit numbershexnumhigh and hexnuml ow.When
aconnection is established between tvdsvr and
TotalView, the 64-bit password passed by TotalView
must match the password set with this option. When
the password is set, tvdsvr displays the selected
number in the following message:

pw = hexnunmhi gh: hexnum ow

We recommend using this option to avoid connections
by other users.

TotalView User's Guide 301



CHAPTER 13: TotalView Debugger Server Command Syntax

Note:  If necessary, you can disable password checking by
specifyingthe—set_pw 0:0 optionwith thetvdsvr command.
Disabling password checking isdangerous; it allows anyone
to connect to your server and start programs, including shell
commands, using your UID. Therefore, we do not
recommend disabling password checking.

—verbosity level Setstheverbosity level of Total View Debugger Server
generated messages to level, which may be one of
silent, error, warning, or info.

Default: info

302 TotaView User's Guide



APPENDI X A:
Compilersand Environments

This appendix describesthe compilersand parallel runtime environmentsthat can
be used with this release of TotalView. Y ou must refer to the TotalView release
notes included in the TotalView distribution for information on the specific
compiler and runtime environment supported by TotalView.

For information on supported operating systems, please refer to Appendix B,
“Operating Systems,” on page 321.

This appendix includes:

» Compilers and runtime environments that TotalView supports

» Command line options needed to compile with debugging symbols
»  Compiling with exception data on Digital UNIX

e Linking with the dbfork library

TotalView User's Guide 303




APPENDIX A: Compilers and Environments

Supported Compilersand Environments

Please refer to the release notes in your TotalView distribution for the latest
information about supported versions of the compilers and parallel runtime
environments listed here.

AlX on RS/6000 Table31liststhesupported compilersand parallel runtime environmentson IBM
S/St ems RS/6000 systems running AlX.

Table31l. Supported Compilers and Environments on AlX

C compilers « IBMxlcC
« FSFGNUC
* CygnusEGCSC

C++ compilers * IBMXIC C++
* FSFGNU C++
* KAIC++
e Cygnus EGCS C++

Fortran compilers < IBM xIf for Fortran 77
» IBM xIf90 for Fortran 90

Environments » Parallel Environment for AIX
« MPICH
« ORNL PVM
» Portland Group HPF

304 TotaView User's Guide



Di gi tal UNI X on Table32liststhe supported compilers and parallel runtime environments on

Digital Alpha
Systems

Digital Alpha systems running Digital UNIX.

Table32. Supported Compilers and Environments on Digital UNIX

C compilers

C++ compilers

Fortran compilers

Environments

Digital UNIX C
FSFGNU C
Cygnus EGCS C

Digital UNIX C++
KAI C++

FSF GNU C++
Cygnus EGCS C++

Digital UNIX Fortran 77
Digital UNIX Fortran 90

MPICH
ORNL PVM
Digital DPVM (PVM)

TotalView User's Guide 305



APPENDIX A: Compilers and Environments

IRIX on SGI
MIPS Systems

Table 33 lists the supported compilers and parallel runtime environments on SGI
MIPS systems running IRIX.

Table 33. Supported Compilers and Environments on IRIX

C compilers

C++ compilers

Fortran compilers

Environments

SGI MIPSpro C
FSF GNU C
CygnusEGCS C

SGI MIPSpro C++
FSF GNU C++
Cygnus EGCS C++

SGI MIPSpro Fortran 77
SGI MIPSpro Fortran 90

MPICH

SGI MPI (part of the Message Passing Toolkit)
ORNL PVM

Portland Group HPF

306 TotaView User's Guide



SunOS4on

Table 34 lists the supported compilers and parallel runtime environments on

Solaris Systems Solaris 1.x systems running SunOS 4.

Table 34. Supported Compilers and Environments on SunOS 4

C compilers

C++ compilers

Fortran compilers

Environments

SunPro C
Apogee C
FSFGNU C
Cygnus EGCS C

SunPro C++
Apogee C++

FSF GNU C++
Cygnus EGCS C++

SunPro Fortran 77

MPICH
ORNL PVM

TotalView User's Guide 307



APPENDIX A: Compilers and Environments

SUnOS5o0n Table 35 lists the supported compilers and parallel runtime environments on

SPARC Solaris SPARC Solaris 2.x systems running SunOS 5.

Systems

Table35. Supported Compilers and Environments on SunOS 5 SPARC
C compilers e SunProC

¢ WorkShop C
e ApogeeC
« FSFGNUC

e CygnusEGCSC

C++ compilers e SunPro C++
¢ WorkShop C++
¢ KAIC++
e Apogee C++
e FSFGNU C++
e Cygnus EGCS C++

Fortran compilers e SunPro Fortran 77
e WorkShop Fortran 77
¢ WorkShop Fortran 90

Environments « MPICH
« ORNL PVYM
e Portland Group HPF

308 TotaView User's Guide



SUnOS5o0n Table 36 lists the supported compilers and parallel runtime environments on
Intel-x86 Solaris SPARC Solaris 2.x systems running SunOS 5.

Systems
Table36. Supported Compilers and Environments on SunOS 5 x86
C compilers ¢ WorkShop C
« FSFGNUC

e CygnuseGCSC

C++ compilers ¢ WorkShop C++
¢ FSFGNU C++
¢ Cygnus EGCS C++

Fortran compilers e WorkShop Fortran 77
Environments « MPICH
¢ ORNL PVM

TotalView User's Guide 309



APPENDIX A: Compilers and Environments

Compiling with Debugging Symbols

Y ou need to compile programs with the —g switch and possibly other compiler
switches so that debugging symbols are included. This section shows the specific
compiler commands to use for each compiler that Total View supports.

Al X on RS/6000 Table37 liststhe proceduresto compile programson IBM RS/6000 systems
%/stems running AlX.

Table37. Compiling with Debugging Symbols on AlX

Compiler Compiler Command Line

IBM xlc C xlc —g —c program.c 1

FSF GNU C or gcc —g —c program.c

CygnusEGCSC

IBM xIC C++ xIC —g —c program.cxx

KAI C++ K CC +K 02 —gnofullpath 3 —c program.cxx
FSF GNU C++ or g++ —g —C program.cxx

Cygnus EGCS C++

IBM xIf Fortran 77 xIf .g— program.f #

IBM xIf90 Fortran 90 xI1f90 —g —c program.f90

Portland Group HPF pghpf —-g —-Mtv —c program.hpf

1. When compiling with any of the IBM x| compilers, if your program
will be moved from its creation directory, or you do not want to set the
search directory path during debugging, passthe—qgfullpath switchtothe
compiler driver. For example: xIf —qgfullpath —g —c program.f

2. When compiling with KCC for debugging, we recommend that you use
the +K 0 option and not the —g option.

310 TotaView User's Guide



3. When compiling with KCC, you must specify the —gnofullpath
option; KCC is a preprocessor that passes its output to the IBM xlc C
compiler that discards #line directives necessary for source level
debugging if —gfullpath is specified.

4. When compiling Fortran programs using the C preprocessor, pass the
—d switch to the compiler driver. For example: xIf —d —g — program.F

TotalView User's Guide 311



APPENDIX A: Compilers and Environments

Di gi tal UNI X on Table 38liststheproceduresto compileprogramsonDigital Alphasystem running
Dlgltal Alpha Digital UNIX.

Systems
Table38. Compiling with Debugging Symbols on Digital UNIX
Compiler Compiler Command Line
Digital UNIX C CC —Qg —C program.c
FSF GNU C or gcc —g —C program.c
Cygnus EGCS C
Digital UNIX C++ CXX —g —C program.cxx
KAl C++ K CC +K 0 —c program.cxx *
FSF GNU C++ or g++ —g —C program.cxx
Cygnus EGCS C++

Digital UNIX Fortran 77 f77 —g — program.f

Digital UNIX Fortran 90 f90 —.g — program.f90

1. When compiling with KCC for debugging, we recommend that you use the
+K 0 option and not the —g option.

312 TotaView User's Guide



IRIX on SGI
MIPS Systems

Table 39 liststhe procedures to compile programs on SGI MIPS systems running
IRIX.

Table39. Compiling with Debugging Symbols on IRIX-MIPS

1

Compiler Compiler Command Line
SGI MIPSpro C cc 32 —g — program.c
cc —64 —g — program.c
FSF GNU C or gcc —g —c program.c
CygnusEGCS C
SGI MIPSpro C++ CC —n32 —g — program.cxx
CC -64 —g — program.cxx
KAl C++ KCC +K 0 —c program.cxx 2
FSF GNU C++ or gcc —g —C program.cxx
Cygnus EGCS C++
SGI MIPSpro77 f77 n32 —g — program.f
f77 64 —g — program.f
SGI MIPSpro 90 f90 -n32 —g — program.f90
f90 —64 —g —c program.f90
Portland Group HPF pghpf —g —64 -Mtv — program.hpf 3

1. Compiling with —n32 or —64 is supported. TotalView does not support
compiling with =32, which is the default for some compilers. Y ou must specify

either —n32 or —64.

2. When compiling with KCC for debugging, we recommend that you use the

+K 0 option and not the —g option.

3. You must compiler your programs with the pghpf —64 compiler option; on
SGI IRIX, TotalView can debug 64-bit executables only.

TotalView User's Guide 313



APPENDIX A: Compilers and Environments

SUnOS4on Table 40|liststhe proceduresto compile programson SunOS4 Solaris 1.x systems
Solaris Systems running SunOS 4.

Table40. Compiling with Debugging Symbols on SunOS 4

Compiler Compiler Command Line
SunPro C CC —g —C program.c
Apogee C apcc —g —c program.c

FSF GNU C or gcc —g —c program.c
Cygnus EGCS C

SunPro C++ CC —g —c program.cxx
Apogee C++ apCC —g —c program.cxx
FSF GNU C++ or g++ —g —C program.cxx
Cygnus EGCS C++

SunPro Fortran 77 f77 —g — program.f

314 TotaView User's Guide



SUnOS5o0n Table 41 lists the procedures to compile programs on SunOS 5 SPARC or Intel-
SPARC or Intel- **

x86 Solaris

Systems

Table4l. Compiling with Debugging Symbols on SunOS 5

Compiler 1 Compiler Command Line
SunPro C or CC —g —C program.c
WorkShop C

Apogee C apcc —g —c program.c

FSF GNU Cor gcc —g —c program.c
CygnusEGCS C

SunPro C++ or CC —g —c program.cxx
WorkShop C

Apogee C++ apCC —g —C program.cxx
FSF GNU C++ or g++ —g —C program.cxx
Cygnus EGCS C++

KAl C++ 2 K CC +K 0 —c program.cxx 3
SunPro Fortran 77 or f77 —g — program.f
WorkShop Fortran 77

WorkShop Fortran 90 f90 —g — program.f90
Portland Group HPF 4 pghpf —.g —-Mtv — program.hpf

1. On SunOS 5 Intel-x86 Solaris systems, TotalView supports only the
WorkShop C, C++, and f77 compilers, and the GNU or EGCS C and C++
compilers.

2. KCC is supported on SunOS 5 SPARC only.

3. When compiling with KCC for debugging, we recommend that you use the
+K 0 option and not the —g option.

4. PGHPF is supported on SunOS 5 SPARC only.

TotalView User's Guide 315



APPENDIX A: Compilers and Environments

Compiling with Exception Data on Alpha
Digital UNIX

If you receive the following error message when you load an executable into
TotalView, you may need to compile your program so that exception datais
included:

“Cannot find exception information. Stack backtraces may not be correct.”
To provide a complete stack backtrace in all situations, TotalView needs the
exception data to be included in the compiled executable. To compile with

exception data, you need to use the following switches:

% cc —-WI,—u,_fpdata size program.c

Where:
-WI Passes the arguments that follow to another
compilation phase (-W), whichinthiscaseisthelinker
(). Each argument is separated by acomma(,).
—u Causes the linker to mark the next argument
(_fpdata_size) as undefined.
,_fpdata_size Marksthe fpdata size variable as undefined, which

forces the exception data into the executable.

Compiling with exception data increases the size of your executable dlightly. If
you choose not to compile with exception data, Total View can provide correct
stack backtraces in most situations, but not in all situations.

316 TotaView User's Guide



Al X on RS/6000
Systems

Linking C++
Programswith
dbfork

Linking with thedbfork Library

If your program uses the for k() and execve() system calls, and you want to debug
the child processes, you need to link programs with the dbfork library.

Add one of the following arguments to the command that you use to link your
programs:

» Jusr/totalview/lib/libdbfork.a
o | /usr/totalview/lib -dbfork
/usr ltotalview/lib/libdbfor k.a —bkeepfile:/usr /totalview/lib/libdbfork.a
—L /usr/totalview/lib 4dbfork —bkeepfile:/usr/totalview/lib/libdbfork.a
For example:

% cc —o program program.c —L /usr/totalview/lib —{dbfork
—bkeepfile:/usr/totalview/lib/libdbfork.a

When you use gcc or g++, use the —-WI,—bkeepfile option instead of —bkeepfile,
which will pass the same option to the binder. For example:

% cc —o program program.c —L /usr /totalview/lib —{dbfork
—WI,—bkeepfile:/usr/totalview/lib/libdbfork.a

The binder option —bkeepfile currently cannot be used with the IBM xIC C++
compiler. The compiler passes al hinder options to an additional pass called
munch, which cannot handle the —bkeepfile option.

Towork around this problem, we have provided the C++ header file libdbfork.h.
Y ou must include this file somewhere in your C++ program, in order to force the
componentsof thedbfork library tobekept inyour executable. Thefilelibdbfork.h
isincluded only with TotalView for the RS/6000 platform, so the include should
be placed under a#ifdef _AlX. For example:

TotalView User's Guide 317



APPENDIX A: Compilers and Environments

#ifdef _AIX

#include “/usr/total view |ib/libdbfork.h”
#endi f

int main (int argc, char *argv[])

{

}

Al pha Di gita| Add one of the following arguments to the command that you use to link your
U N I X programs:

/opt/totalview/lib/libdbfork.a

—L /opt/totalview/lib -{dbfork.a

For example:
% cc —o program program.c —L /opt/totalview/lib —{dbfork

Asan alternative, you can set the LD_LIBRARY _PATH environment variable
and omit the—L option on the command line:

setenv LD_LIBRARY_PATH /opt/totalview/lib

SunOS 4 Add one of the following arguments to the command that you use to link your
programs:

Jusr /totalviewl/lib/libdbfork.a
—L /usr/totalview/lib - dbfork.a

For example:
% cc —o program program.c —L /usr/totalview/lib —{dbfork

Asan aternative, you can set the LD_LIBRARY _PATH environment variable
and omit the—L option on the command line:

setenv LD_LIBRARY_PATH /usr/totalview/lib

318 TotaView User's Guide



SunOS5
SPARC or Intdl-
x86

IRIX6-MIPS

Add one of the following arguments to the command that you use to link your
programs:

/opt/totalview/lib/libdbfork.a
—L /opt/totalview/lib -{dbfork.a

For example:
% cc —o program program.c —L /opt/totalview/lib —{dbfork

Asan aternative, you can set the LD_LIBRARY _PATH environment variable
and omit the—L option on the command line:

setenv LD_LIBRARY_PATH /opt/totalview/lib

Add one of the following arguments to the command that you use to link your
programs.

If you are compiling your code with -n32, use the following arguments:
/opt/totalview/lib/libdbfork_n32.a
—L /opt/totalview/lib -dbfork_n32.a

For example:
% cc-n32—o program program.c —L /opt/totalview/lib - dbfork_n32

If you are compiling your code with —64, use the following arguments:
/opt/totalview/lib/libdbfork.a_n64.a
—L /opt/totalview/lib -{dbfork_n64.a

For example:
% cc—64 —o program program.c —L /opt/totalview/lib - dbfork_n64

Asan aternative, you can set the LD_LIBRARY _PATH environment variable
and omit the—L option on the command line:

setenv LD_LIBRARY_PATH /opt/totalview/lib

TotalView User's Guide 319



APPENDIX A: Compilers and Environments

320 TotaView User's Guide



APPENDI X B:
Operating Systems

This appendix describes the operating system features that can be used with
TotalView. This appendix includes the following topics:

Supported versions

Mounting the /proc file system (Digital UNIX, IRIX, and SunOS 5 only)
Swap space

Shared libraries

Remapping keys (Sun keyboards only)

Capabilities and characteristics

Expression system support

TotalView User's Guide 321



APPENDIX B: Operating Systems

Supported Operating Systems

For acompletelist of hardware and software requirementsincluding required OS
patches and restrictions, see the TotalView release notes in your software
distribution. This version of TotalView supports the following operating system
versions:

Digital Alphaworkstations running Digital UNIX versions V4.0, V4.0A,
V4.0B, V4.0C and V4.0D. All versions require patches See “Digital UNIX
Patch Procedures’ in the TotalView Release Notes for instructions.

IBM RS/6000 and SP systems running AlX versions4.1, 4.2, 4.3, or 4.3.1

Sun Sparc SunOS 4 (Solaris 1.x) systems running SUnOS versions 4.1.1,
412,41.3,0r4.14

Sun Sparc SUnOS5 (Solaris 2.x) systemsrunning SunOSversions5.5, 5.5.1,
or 5.6. (Solaris 2.5, 2.5.1, or 2.6)

Intel-x86 SUNOS5 (Solaris2.x) systemsrunning SunOSversions5.6. (Solaris
2.6)

SGI IRIX 6.2, 6.3, 6.4, or 6.5 on any MIPS R4000, R4400, R4600, R5000,
R8000, or R10000 processor-based systems

QSW CS-2 based on Sparc Solaris 2.5.1 or 2.6

Note: QSW CS-2 TotaView isnearly identical to TotalView on

Sun Solaris 2.x systems.

Please seethe Total View Supplement for CS-2 Usersfor more
information of CS-2 TotalView specific features.

322 TotaView User's Guide



Mounting the /proc File System

Digital UNI X,
SunOS5, and
IRIX

Mounting the /proc File System

To debug programs on Digital UNIX, SunOS 5, and IRIX with TotalView, you
need to mount the /proc file system.

If you receive one of the following errors from Total View, the /proc file system
might not be mounted:

» job_t::launch, creating process. process not found

» Error launching process while trying to read dynamic symbols

» Creating Process... Process not found
Clearing Thrown Flag
Operation Attempted on an unbound d_process object.

To determine whether the /proc file system is mounted, enter the appropriate
command from Table 42.

Table42. Commands for Determining Whether /proc is Mounted

Operating System

Command

Digital UNIX % /shin/mount —t procfs
/[proc on /proc type procfs (rw
SunOS 5 % /sbin/mount | grep /proc
/proc on /proc read/wite/setuid on Thu Jun 9 18: 2208
1994
IRIX % /shin/mount | grep /proc
/[proc on /proc type proc (rw)
If you receive the message shown from the mount command, the/pr oc file system
is mounted.
Di gita] UNI X To make sure that the /proc file system is mounted each time your system boots,
and SUnOS5 add the appropriate line from Table 43 to the appropriate file. Then, to mount the

/proc file system, enter the following command:

% /sbin/mount /proc

TotalView User's Guide 323



APPENDIX B: Operating Systems

Table43. Commands for Automatically Mounting /proc File System

Operating System Name of File Lineto add
Digital UNIX /etc/fstab / proc [proc procfs rwO0O O
SunOS 5 /etc/vfstab [proc - [/proc proc - no -
IRI X To make sure that the /proc file system is mounted each time your system boots,

make sure that /etc/r c2 issues the /etc/mntproc command. Then, to mount the
/proc file system, enter the following command:

% /etc/mntproc

Swap Space

Debugging large programs can exhaust the swap space on your machine. If you
run out of swap space, TotalView exitswith afatal error, such as:
» Fatal Error: Out of spacetrying to alocate
This error indicates that either:
» TotalView faled to alocate dynamic memory. It can occur anytime
during a TotalView session.

» Thedatasizelimitinthe C shell istoo small. Y ou can usethe C shell’s
[imit command to increase the data size limit. For example:

% limit datasize unlimited

» job_t::launch, creating process: Operation failed

This error indicates that the fork () or execve() system call failed while
TotalView was creating a process to debug. It can happen when Total View
tries to create a process.

324 TotaView User's Guide



Swap Space

Di gita| UNI X To find out how much swap space has been allocated and is currently being used,
use the swapon command on Digital UNIX:

% /shin/swapon —s

Total swap allocation:

Al |l ocat ed space: 85170 pages (665MB)
Reserved space: 14216 pages ( 16%
Avai | abl e space: 70954 pages ( 83%

Swap partition /dev/rz3b:

Al |l ocat ed space: 16384 pages (128MB)
I n-use space: 2610 pages ( 15%
Free space: 13774 pages ( 84%

Swap partition /dev/rz3h:

Al |l ocat ed space: 52402 pages (409MB)
I n-use space: 2575 pages ( 4%

Free space: 49827 pages ( 95%

Swap partition /dev/rzlb:

Al |l ocat ed space: 16384 pages (128MB)
I n-use space: 2592 pages ( 15%
Free space: 13792 pages ( 84%

In thisexample, 665M B of swap has been allocated, and 106MB of it is currently
inuse.

To find out how much swap space isin use while you are running Total View:
% /bin/[ps—OLFMT
For example, in this case the value in the VSZ column is 4.45MB:

ub PID PPID CP PRI N VSZ RSS WCHAN S TT TI ME COMVAND
12270 5340 5293 O 41 0 4.45M 1.27 event S p0O 0:00.17 totalview a.out

To add swap space, use the /shin/swapon(8) command. Y ou must be root to use
this command. For more information, refer to the on-line manual page for this
command.

TotalView User's Guide 325



APPENDIX B: Operating Systems

Al X To find out how much swap space has been allocated and is currently being used,
use the pstat command:

% /usr/sbin/pstat —s
PAGE SPACE:

USED PAGES FREE PAGES
7555 115325

Inthisexample, 122880 (7555 + 115325) pages of swap have been allocated. 7555
pages are currently in use and 115325 pages are free.

To find out how much swap space isin use while you are running Total View:

1. Start TotalView with alarge executable:

% totalview executable

2. Press Control-Z to suspend TotalView.
3. Usethefollowing command to see how much swap space Total View isusing:

% psu
For example, in this case the value in the SZ column is 5476KB:

USER PID %CPU “EM SZ RSS TTY STAT STIME TI ME COMVAND
smth 15080 0.0 6.0 5476 5476 pts/1 T 09:31:43 0:00 total vi ew executable

To add swap space, usethe AlX system management tool, smit. Usethefollowing
path through the smit menus:

System Storage M anagement »L ogical Volume Manager »Paging Space

SunOS 4 To find out how much swap space has been allocated and is currently being used,
use the pstat command:

% /etc/pstat —T
136/582 files
2/ 26 inodes
38/ 138 processes
5872/ 157896 swap

326 TotaView User's Guide



Swap Space

Inthisexample, 157896K of swap has been allocated, and 5872K of itiscurrently
inuse.

To find out how much swap space isin use while you are running Total View:

1. Start TotalView with alarge executable:

% totalview executable

2. Press Control-Z to suspend TotalView.
3. Usethefollowing command to see how much swap space Total View isusing:

% psu
For example, in this case the value in the SZ column is 66043K, or 66MB:

USER PID 9%PU %9EM SZ RSS TT STAT START  TIME COVMAND
smith 13276 3.5 17.9660439844 pf S 15: 40 0:51 total view executable

To add swap space, use the mkfile(8) and swapon(8) commands. Y ou must be
root to use these commands. For more information, refer to the online manual
pages for these commands.

SunOS5 To find out how much swap space has been allocated and is currently being used,
use the swap command:
% /usr/sbin/swap —s
total: 16192K bytes all ocated + 7140K bytes
reserved = 23332K used, 63456K avail abl e

To find out how much swap space isin use while you are running Total View:

1. Start TotalView with alarge executable:

% totalview executable

2. Press Control-Z to suspend TotalView.
3. Usethefollowing command to see how much swap space Total View isusing:
% /bin/ps-

TotalView User's Guide 327



APPENDIX B: Operating Systems

For example, inthiscasethevalueinthe SZ column is 1036 pages, with each
page being 4K in size.

F S ubD Pl D PPID C PR N ADDR  SZ WCHAN TTY  TI ME COVD
8 T 14694 3456 2558 80 1 20 ff451000 1036 pts/4 0:01 total view
To add swap space, use the mkfile(1M) and swap(1M) commands. Y ou must be
root to use these commands. For more information, refer to the on-line manual
pages for these commands.
|RIX To find out how much swap space has been allocated and is currently being used,
use the swap command:
% /sbin/swap —s
total: 1.55mallocated + 124. 47madd’'| reserved =
126. 02m byt es used, 250.94m bytes avail abl e
To find out how much swap space isin use while you are running Total View:
1. Start TotalView with alarge executable:
% totalview executable
2. Press Control-Z to suspend TotalView.
3. Usethefollowing command to see how much swap space Total View isusing:
% /bin/ps-
For example, in this case the value in the SZ column is 584 pages.
F S ubD PID PPID C PRR NI P SZ:RSS  WCHAN TTY TI ME CMD
b0 T 14694 26236 26271 5 62 20 * 584:373 - ttyqgb 0: 01 total view

Use the following command to determine the number of bytesin a page:
% sysconf PAGESIZE
To add swap space, use the mkfile(1M) and swap(1M) commands. Y ou must be

root to use these commands. For more information, refer to the on-line manual
pages for these commands.

328 TotaView User's Guide



Shared Libraries

Shared Libraries

TotalView supports dynamically linked executables, that is, executables that are
linked with shared libraries.

Whenyou start Total View with adynamically linked executable, TotalView loads
an additional set of symbolsfor the shared library, asindicated in the shell from
which you started TotalView. To accomplish this, TotalView:

* Runsasample process and discardsiit.

» Readsinformation from the process.

* Readsthe symbol table for each library.

Note:  TotalView does not read the symbol table of shared libraries
that are loaded at runtime using the following functions:

For Digital UNIX, SunOS 4, SunOS 5, and IRIX: dlopen()
function

For AIX: dlopen() or load() functions.

When you create a process without starting it, and the process does not include
shared libraries, the program counter points to the entry point of the process, the
start routine. If the process does include shared libraries, however, Total View
takes the following actions:

* Runsthe dynamic loader (SunOS 4 and SunOS 5: 1d.so, Digital UNIX:
/sbin/loader, IRIX: rid).

» Setsthe PC to point to thelocation after theinvocation of the dynamic loader
but before the invocation of the main routine.

When you attach to a process that uses shared libraries, Total View takes the
following actions:
» If you attached to the process after the dynamic loader ran, then TotalView
loads the dynamic symbols for the shared library.

» If you attached to the process before it runs the dynamic loader, TotalView
allowsthe processto run the dynamicloader to completion. Then, Total View
loads the dynamic symbols for the shared library.

TotalView User's Guide 329



APPENDIX B: Operating Systems

If desired, you can suppress the use of shared librariesby starting Total View with
the —no_dynamic option. Refer to Chapter 12, “ Total View Command Syntax,”
on page 287 for details on this TotalView start-up option.

If you believe that a shared library has changed since you started a Totalview
session, you can use the Reload Shared Library Information command on the
Current/Update/Relative submenu to rel oad library symbol tables. Beawarethat
only some systems such as Al X permit you to reload library information.

Remapping Keys

Onthe SUNOS 4 and SUnOS 5 keyboards, you may need to remap the page-up and
page-down keys to the Prior and Next keysym so that you can scroll TotalView
windowswith the page-up and page-down keys. To do so, add the following lines
to your X Window System start-up file:

# Remap F29/F35 to PgUp/ PgDn
xnmodmap -e ' keysym F29 = Prior'
xnmodmap -e ' keysym F35 Next '

AlX

Expression System
Depending on the target platform, TotalView supports:

» Aninterpreted expression system only
» Both aninterpreted and a compiled expression system

Unless stated otherwise below, Total View supports interpreted expressions only.
See“Interpreted vs. Compiled Expressions’ on page 209 for more information on
the differences between interpreted and compiled expressions.

On AlX, TotalView supports compiled and interpreted expressions. TotalView
also supports assembler in expressions.

330 TotaView User's Guide



Expression System

Di gita| UNI X On Digital Unix, TotalView supports compiled and interpreted expressions.
TotalView also supports Assembler in expressions.

Expr on on Some program functions called from the Total View expression system on the

the Power Power architecture cannot have floating-point arguments which are passed by
value. However, in functions with avariable number of arguments, floating-point
arguments can be in the varying part of the argument list. For example, you can
include floating-point arguments with callsto printf:

doubl e d = 3.14159;
printf("d = %\n", d);

TotalView User's Guide 331



APPENDIX B: Operating Systems

332 TotaView User's Guide



APPENDI X C:
Architectures

This appendix describes the architectures Total View supports, including:

*  Power
* Alpha
« SPARC
* MIPS

* Intel-x86 (Intel 80386, 80486 and Pentium processors)

It includes the following topics for each architecture:

» Generd registers
» Floating-point registers
» Floating-point format

TotalView User's Guide 333



APPENDIX C: Architectures

Power General

Registers

Table44. Power Genera Purpose Integer Registers

Power

TotalView displays Power general registersin the stack frame pane of the process

window. Table 44 describes how TotalView treats each general register, and the
actions you can take with each register.

Data Specify in

Register Description Type Edit Dive Expression
RO General register 0 <int> yes  yes $r0
SP Stack pointer <int> yes yes $sp
RTOC TOC pointer <int> yes yes $rtoc
R3-R31 General registers 3—31 <int> yes  yes $r3-%$r31
INUM <int> yes no $inum
PC Program counter <code>[] no yes $pc
SRR1 Machine status <int> yes no $srrl

save/restore register
LR Link register <int> yes no $Ir
CTR Counter register <int> yes no $etr
CR Condition register <int> yes no $er
XER Integer exception register <int> yes no $xer
DAR Data address register <int> yes no $dar
MQ MQ register <int> yes no $mq
MSR Machine state register <int> yes no $msr
SEGO - SEG9 Segment registers0—9 <int> yes no $seg0 — $seg9

334 TotaView User's Guide



Power

Table44. Power Genera Purpose Integer Registers (Continued)

Data Specify in
Register Description Type Edit Dive Expression
SG10 - SG15 Segment registers 10 —15 <int> yes no $s910 — $sg15
SCNT SS COUNT <int> yes no $sent
SAD1 SS ADDR 1 <int> yes no $sadl
SAD2 SS ADDR 2 <int> yes no $sad2
SCD1 SS CODE 1 <int> yes no $scdl
SCD2 SS CODE 2 <int> yes no $scd2
TID <int> yes no
Power M SR For your convenience, TotalView interprets the bit settings of the Power MSR

register. You can edit the value of the MSR and set it to any of the bit settings

Register outlined in Table 45.

Table45. Power MSR Register Bit Settings

Value Bit Setting  Meaning

0x00040000 POW Power management enable
0x00020000 TGPR Temporary GPR mapping
0x00010000 ILE Exception little-endian mode
0x00008000 EE External interrupt enable
0x00004000 PR Privilege level

0x00002000 FP Floating-point available
0x00001000 ME Machine check enable
0x00000800 FEO Floating-point exception mode 0

TotalView User's Guide 335



APPENDIX C: Architectures

Table45. Power MSR Register Bit Settings (Continued)

Value Bit Setting  Meaning

0x00000400 SE Single-step trace enable
0x00000200 BE Branch trace enable
0x00000100 FE1 Floating-point exception mode 1
0x00000040 IP Exception prefix

0x00000020 IR Instruction address translation
0x00000010 DR Data address tranglation
0x00000002 RI Recoverable exception
0x00000001 LE Little-endian mode enable

Power Floati ng- Total View displays the Power floating-point registersin the stack frame pane of
. . the processwindow. Table 46 describes how Total View treats each floating-point
Point Regl sters register, and the actions you can take with each register.

Table46. Power Floating-Point Registers

Specify in
Register Description DataType Edit Dive Expression
FO-F31 Floating-point registers 0 — 31 <double> yes yes $f0 — $f31
FPSCR Floating-point status register <int> yes no $fpscr
FPSCR2 Floating-point status register 2 <int> yes no $fpscr2

336 TotaView User's Guide



Power

Power FPSCR For your convenience, TotalView interprets the bit settings of the Power FPSCR
R egi Ster (r)ig?[:izrd IIO#J a(k:)?g jc;i-t the value of the FPSCR and set it to any of the bit settings
Table47. Power FPSCR Register Bit Settings
Value Bit Setting Meaning
0x80000000 FX Floating-point exception summary
0x40000000 FEX Floating-point enabled exception summary
0x20000000 VX Floating-point invalid operation exception summary
0x10000000 OX Floating-point overflow exception
0x08000000 UX Floating-point underflow exception
0x04000000 ZX Floating-point zero divide exception
0x02000000 XX Floating-point inexact exception
0x01000000 VXSNAN Floating-point invalid operation exception for SNaN
0x00800000 VXIS Floating-point invalid operation exception: ©0 — ©0
0x00400000 VXIDI Floating-point invalid operation exception: 00 | o0
0x00200000 VXzZDZ Floating-point invalid operation exception: 0/ 0
0x00100000 VXIMZ Floating-point invalid operation exception: 00 * 00
0x00080000 VXVC Floating-point invalid operation exception: invalid
compare
0x00040000 FR Floating-point fraction rounded
0x00020000 Fl Floating-point fraction inexact
0x00010000 FPRF=(C) Floating-point result class descriptor
0x00008000 FPRF=(L) Floating-point less than or negative
0x00004000 FPRF=(G) Floating-point greater than or positive

TotalView User's Guide 337



APPENDIX C: Architectures

Table47. Power FPSCR Register Bit Settings (Continued)

Value Bit Setting Meaning

0x00002000 FPRF=(E) Floating-point equal or zero

0x00001000 FPRF=(U) Floating-point unordered or NaN

0x00011000  FPRF=(QNAN) Quiet NaN; alias for FPRF=(C+U)

0x00009000  FPRF=(-INF) -Infinity; alias for FPRF=(L+U)

0x00008000 FPRF=(-NORM) -Normalized number; alias for FPRF=(L)

0x00018000 FPRF=(-DENORM)  -Denormalized number; alias for FPRF=(C+L)

0x00012000  FPRF=(-ZERO) -Zero; dlias for FPRF=(C+E)

0x00002000 FPRF=(+ZERO) +Zero; dias for FPRF=(E)

0x00014000 FPRF=(+DENORM) +Denormalized number; dias for FPRF=(C+G)

0x00004000 FPRF=(+NORM) +Normalized number; alias for FPRF=(G)

0x00005000 FPRF=(+INF) +Infinity; aias for FPRF=(G+U)

0x00000400 VXSOFT Floating-point invalid operation exception: software
request

0x00000200 VXSQRT Floating-point invalid operation exception: square
root

0x00000100 VXCVI Floating-point invalid operation exception: invalid
integer convert

0x00000080 VE Floating-point invalid operation exception enable

0x00000040 OE Floating-point overflow exception enable

0x00000020 UE Floating-point underflow exception enable

0x00000010 ZE Floating-point zero divide exception enable

0x00000008 XE Floating-point inexact exception enable

338 TotaView User's Guide



Power

Table47. Power FPSCR Register Bit Settings (Continued)

Value Bit Setting Meaning

0x00000004 NI

Floating-point non-1EEE mode enable

0x00000000 RN=NEAR Round to nearest
0x00000001 RN=ZERO Round toward zero
0x00000002 RN=PINF Round toward +infinity
0x00000003 RN=NINF Round toward -infinity
Usi ng thePower OnAIX, if you compileyour program to catch floating point exceptions (IBM

FPSCR Register

Power Floating-
Point Format

compiler -gflttrap option), you can change the value of the FPSCR within
TotalView to customize the exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the bit
setting of the FPSCR register in the stack frame pane. In this case, you would
change the hit setting for the FPSCR to include 0x10 (as shown in Table 47) so
that TotalView traps the “divide by zero” exception. The string displayed next to
the FPSR register should now include“ZE”. Now, when your program divides by
zero, it receives a SIGTRAP signal, which will be caught by TotalView. See
Chapter 3, “ Setting Up aDebugging Session,” on page 35 and “Handling Signals”
on page 48 for more information. If you did not set the bit for trapping divide by
zero or you did not compileto catch floating point exceptions, your programwould
not stop and the processor would set the “ZX" bit.

The Power architecture supports the | EEE floating-point format.

TotalView User's Guide 339



APPENDIX C: Architectures

SPARC

SPARC General TotaView displaysthe SPARC general registersin the stack frame pane of the
Reqisters process window. Table 48 describes how TotalView treats each general register,
=Y and the actions you can take with each register.

Table48. SPARC General Registers

Specify in
Register Description DataType Edit Dive Expression
GO Global zero register <int> no no $g0
G1l-G7  Globa registers <int> yes yes $91 — $g7
0O0-05  Outgoing parameter registers <int> yes yes $00 — $05
SP Stack pointer <int> yes yes $sp
o7 Temporary register <int> yes yes $o7
LO-L7 Local registers <int> yes  yes $I0-3I7
10-15 Incoming parameter registers <int> yes  yes $i0—%$i5
FP Frame pointer <int> yes yes $fp
17 Return address <int> yes yes $i7
PSR Processor status register <int> yes no $psr
Y Y register <int> yes yes By
WIM WIM register <int> no no
TBR TBR register <int> no no
PC Program counter <code>[] no yes $pc
nPC Next program counter <code>[] no yes $npc

340 TotaView User's Guide



SPARC

SPARC PSR For your convenience, TotalView interprets the bit settings of the SPARC PSR
: register. You can edit the value of the PSR and set some of the bits outlined in
Register Table 49.

Table49. SPARC PSR Register Bit Settings

Value Bit Setting Meaning

ET 0x00000020 Traps enabled

PS 0x00000040 Previous supervisor

S 0x00000080 Supervisor mode

EF 0x00001000 Floating-point unit enabled

EC 0x00002000 Coprocessor enabled

C 0x00100000 Carry condition code

\Y, 0x00200000 Overflow condition code

z 0x00400000 Zero condition code

N 0x00800000 Negative condition code
SPARC TotaView displaysthe SPARC floating-point registersin the stack frame pane of

the processwindow. Table 50 describes how Total View treats each fl oating-point

Floati ng-Point register, and the actions you can take with each register.

Registers
Table50. SPARC Floating-Point Registers
Specify in
Register  Description DataType Edit Dive Expression
FO—F31 Floating-pointregisters(fregisters),used  <float> yes yes $f0— $f31
singly!

FO/F1 - Floating point registers(fregisters),used  <double> yes yes $f0_f1—
F30/F31  aspairst $f30_f31

TotalView User's Guide 341



APPENDIX C: Architectures

Table50. SPARC Floating-Point Registers (Continued)

Specify in
Register  Description DataType Edit Dive Expression
FPCR Floating-point control register <int> no no $fper
FPSR Floating-point status register <int> yes no $fpsr

1. TotalView alows you to use these registers singly or in pairs, depending on how they are used by your
program. For example, if you use F1 by itself, its typeis <float>, but if you use the FO/F1 pair, itstypeis
<double>.

SPARC FPSR For your convenience, TotalView interprets the bit settings of the SPARC FPSR
Reqister register. You can edit the value of the FPSR and set it to any of the bit settings
=Y outlined in Table 51.

Table51. SPARC FPSR Register Bit Settings

Value Bit Setting Meaning

CEXC=NX 0x00000001 Current inexact exception
CEXC=Dz 0x00000002 Current divide by zero exception
CEXC=UF 0x00000004 Current underflow exception
CEXC=0F 0x00000008 Current overflow exception
CEXC=NV 0x00000010 Current invalid exception
AEXC=NX 0x00000020 Accrued inexact exception
AEXC=DZ 0x00000040 Accrued divide by zero exception
AEXC=UF 0x00000080 Accrued underflow exception
AEXC=0F 0x00000100 Accrued overflow exception
AEXC=NV 0x00000200 Accrued invalid exception

EQ (0x00000000 Floating-point condition =

342 TotaView User's Guide



Table51. SPARC FPSR Register Bit Settings (Continued)

SPARC

Value Bit Setting M eaning

LT 0x00000400 Floating-point condition <

GT 0x00000800 Floating-point condition >

UN 0x00000c00 Floating-point condition unordered

ONE 0x00002000 Queue not empty

NONE 0x00000000 Floating-point trap type None

|IEEE 0x00004000 Floating-point trap type | EEE Exception

UFIN 0x00008000 Floating-point trap type Unfinished FPop

UIMP 0x0000c000 Floating-point trap type Unimplemented FPop
SEQE 0x00010000 Floating-point trap type Sequence Error

NS 0x00400000 Non-standard floating-point FAST mode
TEM=NX 0x00800000 Trap enable mask — Inexact Trap Mask
TEM=DZ 0x01000000 Trap enable mask — Divide by Zero Trap Mask
TEM=UF 0x02000000 Trap enable mask — Underflow Trap Mask
TEM=0OF 0x04000000 Trap enable mask — Overflow Trap Mask
TEM=NV 0x08000000 Trap enable mask — Invalid Operation Trap Mask
EXT 0x00000000 Extended rounding precision — Extended precision
SGL 0x10000000 Extended rounding precision — Single precision
DBL 0x20000000 Extended rounding precision — Double precision
NEAR 0x00000000 Rounding direction — Round to nearest (tie-even)
ZERO 0x40000000 Rounding direction —Round to O

PINF 0x80000000 Rounding direction — Round to +Infinity

TotalView User's Guide 343



APPENDIX C: Architectures

Table51. SPARC FPSR Register Bit Settings (Continued)

Value Bit Setting Meaning
NINF 0xc0000000 Rounding direction — Round to -Infinity
Usi ng the The SPARC processor does not catch floating-point errors by default. Y ou can
change the value of the FPSR within TotalView to customize the exception
SPA_ RC FPSR handling for your program.
Register
For example, if your program inadvertently divides by zero, you can edit the bit
setting of the FPSR register in the stack frame pane. Inthiscase, you would change
the bit setting for the FPSR to include 0x01000000 (as shown in Table 51) so that
TotalView trapsthe “divide by zero” bit. The string displayed next to the FPSR
register should now include TEM=(DZ). Now, whenyour programdividesby zero,
it receives a SIGFPE signal, which you can catch with Total View. See Chapter 3,
“ Setting Up aDebugging Session,” on page 35 and“Handling Signals’ on page 48
for more information. If you did not set the bit for trapping divide by zero, the
processor would ignore the error and set the AEXC=(DZ) hit.
SPARC The SPARC processor supports the | EEE floating-point format.
Floating-Point
Format

344 TotaView User's Guide



Alpha

Alpha General

Registers

Table52. AlphaGenera Purpose Integer Registers

Alpha

TotalView displays the Alpha general registersin the stack frame pane of the

process window. Table 52 describes how Total View treats each general register,
and the actions you can take with each register.

Specify in
Register Description DataType Edit Dive Expression
VO Function value register <long> yes  yes $v0
TO-T7 Conventional scratch registers <long> yes yes $t0— $t7
S0-S5 Conventional saved registers <long> yes yes $s0 — $s5
S6 Stack frame base register <long> yes  yes $s6
AO0—-A5  Argument registers <long> yes yes $a0 — $a5
T8-T11  Conventiona scratch registers <long> yes  yes $t8—$t11
RA Return Address register <long> yes  yes $ra
T12 Procedure value register <long> yes yes $t12
AT Volatile scratch register <long> yes yes $at
GP Global pointer register <long> yes yes $ap
SP Stack pointer <long> yes yes $sp
ZERO ReadAsZero/Sink register <long> no yes $zero
PC Program counter <code>[] no yes $pc
FP Frame pointer! <long> no yes $p

1. The Frame Pointer (FP) isasoftware register that Total View maintains; it isnot an actual hardware register.
TotalView computes the value of FP as part of the stack backtrace.

TotalView User's Guide 345



APPENDIX C: Architectures

Al pha Floati ng- TotalView displays the Alpha floating-point registersin the stack frame pane of
Point Reqisters the processwindow. Table 53 describes how Total View treats each fl oating-point
€9 register, and the actions you can take with each register.

Table53. AlphaFloating-Point Registers

Specify in
Register Description DataType Edit Dive Expression
FO-F1 Floating-point registers (f registers), <double> yes yes $f0 — $f1
used singly

F2-F9 Conventional saved registers <double> yes yes $f2 —$f9
F10—F15 Conventional scratch registers <double> yes yes $f10 - $f15
F16—-F21  Argument registers <double> yes yes $f16 — $f21
F22-F30 Conventional scratch registers <double> yes yes $f22 — $30
F31 ReadAsZero/Sink register <double> yes  yes $31

FPCR Floating-point control register <long> yes no $fper

Al p ha FPCR For your convenience, TotalView interprets the bit settings of the Alpha FPCR

register. You can edit the value of the FPCR and set it to any of the bit settings

Register outlined in Table 54.

Table54. AlphaFPCR Register Bit Settings
Value Bit Setting M eaning
SUM (0x8000000000000000 Summary bit

DYN=CHOP  0x0000000000000000  Rounding mode — Chopped rounding mode
DYN=MINF (0x0400000000000000 Rounding mode — Minus infinity
DYN=NORM  0x0800000000000000 Rounding mode — Normal rounding
DYN=PINF 0x0c00000000000000 Rounding mode — Plus infinity

o) 0x0200000000000000  Integer overflow

346 TotaView User's Guide



Alpha

Table54. AlphaFPCR Register Bit Settings (Continued)

Value Bit Setting M eaning

INE 0x0100000000000000 Inexact result
UNF (0x0080000000000000  Underflow

OVF 0x0040000000000000  Overflow

DZE 0x0020000000000000 Division by zero
INV 0x0010000000000000  Invalid operation

Alpha Floating-

Point Format

The Alpha processor supports the |EEE floating point format.

TotalView User's Guide 347



APPENDIX C: Architectures

MIPS General
Registers

MIPS

TotalView displaysthe MIPS general purpose registersin the stack frame pane of

the process window. Table 55 describes how TotalView treats each general
register, and the actions you can take with each register.

Table55. MIPS General (Integer) Registers

Specify in
Register  Description DataType' Edit Dive Expression
ZERO Always has the value 0 <long> no no $zero
AT Reserved for the assembler <long> yes yes $at
VO-V1  Function vaue registers <long> yes yes $v0—-3$v1
AO—A7  Argument registers <long> yes  yes $a0 — $a7
TO-T3 Temporary registers <long> yes yes $t0— $t3
0 -S7 Saved registers <long> yes  yes $s0 — $s7
T8-T9  Temporary registers <long> yes  yes $t8—$t9
KO-K1  Reserved for the operating system <long> yes yes $k1—$k2
GP Global pointer <long> yes yes $gp
SP Stack pointer <long> yes yes $sp
8 Hardware frame pointer <long> yes yes $s8
RA Return address register <code>[] no yes $ra
MDLO Multiply/Divide special register, holds <long> yes yes $mdlo

least-significant bits of multiply,
quotient of divide

348 TotaView User's Guide



MIPS

Table55. MIPS Genera (Integer) Registers (Continued)
Specify in

Register  Description Data Type1 Edit Dive Expression
MDHI Multiply/Divide special register, holds <long> yes yes $mdhi

most-significant bits of multiply,

remainder of divide
CAUSE Cause register <long> yes yes $cause
EPC Program counter <code>[] no yes $epc
SR Status register <long> no no $sr
VFP Virtual frame poi nter? <long> no no $vfp

1. On MIPS, programs compiled either —64 or .32 have 64 bit registers. TotalView uses <long> for -64
compiled programs and <long long> for .32 compiled programs.

2. Thevirtua frame pointer isasoftware register that Total View maintains. It isnot an actual hardwareregister.
TotalView computes the VFP as part of stack backtrace.

MIPS SR

Register

For your convenience, TotalView interprets the bit settings of the SR register as
outlined in Table 56.

Table56. MIPS SR Register Bit Settings

Value Bit Setting Meaning

0x00000001 IE Interrupt enable

0x00000002 EXL Exception level

0x00000004 ERL Error level

0x00000008 S Supervisor mode

0x00000010 U User mode

0x00000018 U Undefined (implemented as User mode)
(0x00000000 K Kernel mode

TotalView User's Guide 349



APPENDIX C: Architectures

Table56. MIPS SR Register Bit Settings (Continued)

Value Bit Setting  Meaning

0x00000020 UXx User mode 64-bit addressing

0x00000040 SX Supervisor mode 64-bit addressing

0x00000080 KX Kernel mode 64-bit addressing

0x0000FF00 IM=i Interrupt Mask valueisi

0x00010000 DE Disable cache parity/ECC

0x00020000 CE Reserved

0x00040000 CH Cache hit

0x00080000 NMI Non-maskable interrupt has occurred

0x00100000 SR Soft reset or NMI exception

0x00200000 TS TLB shutdown has occurred

0x00400000 BEV Bootstrap vectors

0x02000000 RE Reverse-Endian bit

0x04000000 FR Additional floating-point registers
enabled

0x08000000 RP Reduced power mode

0x10000000 CuU0 Coprocessor 0 usable

0x20000000 Cul Coprocessor 1 usable

0x40000000 Ccu2 Coprocessor 2 usable

0x80000000 XX MIPS IV instructions usable

350 TotaView User'sGuide



M| PS Floating-
Point Registers

Table57. MIPS Floating-Point Registers

MIPS

TotalView displays the M1PS floating-point registers in the stack frame pane of
the processwindow. Table 57 describes how Total View treats each fl oating-point
register, and the actions you can take with each register.

Specify in
Register Description DataType Edit Dive Expression
FO, F2 Hold results of floating-point type <double> yes yes $f0, $f2
function. $f0 has the real part, $f2 has
the imaginary part
F1-F3, Temporary registers <double> yes yes $f1—$f3,
F4-F11 $f4-$f11
F12—-F19 Passsingleor double precision actual <double> yes yes $f12 - $f19
arguments
F20—-F23  Temporary registers <double> yes yes $f20 — $f23
F24-F31  Saved registers <double> yes yes $f24 — $f31
FCSR FPU control and status register <int> yes no $fcsr
MIPS FCSR For your convenience, TotalView interprets the bit settings of the MIPS FCSR
Reqister register. Y ou can edit the value of the FCSR and set it to any of the bit settings
e outlined in Table 58.

Table58. MIPSFCSR Register Bit Settings

Value Bit Setting Meaning

RM=RN 0x00000000 Round to nearest

RM=RZ 0x00000001 Round toward zero

RM=RP 0x00000002 Round toward plus infinity
RM=RM 0x00000003 Round toward minusinfinity
flags=(l) 0x00000004 Flag=inexact result

TotalView User's Guide 351



APPENDIX C: Architectures

Table58. MIPSFCSR Register Bit Settings (Continued)

Value Bit Setting Meaning

flags=(U) 0x00000008 Fag=underflow

flags=(0) 0x00000010 Flag=overflow

flags=(2) 0x00000020 Flag=divide by zero

flags=(V) 0x00000040 Flag=invalid operation

enables=(I) 0x00000080 Enables=inexact result

enables=(U) 0x00000100 Enables=underflow

enables=(0) 0x00000200 Enables=overflow

enables=(2) 0x00000400 Enables=divide by zero

enables=(V) 0x00000800 Enables=invalid operation

cause=(1) 0x00001000 Cause=inexact result

cause=(U) 0x00002000 Cause=underflow

cause=(0) 0x00004000 Cause=overflow

cause=(2) 0x00008000 Cause=divide by zero

cause=(V) 0x00010000 Cause=invalid operation

cause=(E) 0x00020000 Cause=inexact result

FCC=(0/c) 0x00800000 FCC=Fl oating-Point Condition Code 0; c=Condition bit
FS 0x01000000 Flush to zero

FCC=(2) 0x02000000 FCC=HF oating-Point Condition Code 1
FCC=(2) 0x04000000 FCC=Floating-Point Condition Code 2
FCC=(3) 0x08000000 FCC=Floating-Point Condition Code 3
FCC=(4) 0x10000000 FCC=HF oating-Point Condition Code 4

352 TotaView User's Guide



MIPS

Table58. MIPSFCSR Register Bit Settings (Continued)

Value Bit Setting Meaning

FCC=(5) 0x20000000 FCC=Floating-Point Condition Code 5
FCC=(6) 0x40000000 FCC=Floating-Point Condition Code 6
FCC=(7) 0x80000000 FCC=HF oating-Point Condition Code 7

Using the MIPS
FCSR Register

MIPS Floating-
Point Format

MIPSDelay Slot
I nstructions

Y ou can change the value of the MIPS FCSR register within TotalView to
customize the exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the bit
setting of the FCSR register in the stack frame pane. In thiscase, youwould change
the bit setting for the FCSR to include 0x400 (as shown in Table 58). The string
displayed next to the FCSR register should now include “enables=(Z)". Now,
when your program divides by zero, it receives a SIGFPE signal, which you can
catch with Total View. See Chapter 3, “ Setting Up a Debugging Session,” on
page 35 and “Handling Signals’ on page 48 for more information.

The MIPS processor supports the |EEE floating point format.

On the MIPS architecture, jJump and branch instructions have a“delay slot”. This
means that the instruction after the jump or branch instruction is executed before
the jump or branch is executed.

In addition, there isagroup of “branch likely” conditional branch instructionsin
which the instruction in the delay slot is executed only if the branch is taken.

The MIPS processors execute the jJump or branch instruction and the delay slot
instruction asan indivisibleunit. If an exception occursasaresult of executing the
delay dot instruction, the branch or jump instruction is not executed, and the
exception appears to have been caused by the jump or branch instruction.

This behavior of the MIPS processors affects both the Total View instruction step
command and TotalView breakpoints.

TotalView User's Guide 353



APPENDIX C: Architectures

The Total View instruction step command will step both the jump or branch
instruction and the delay slot instruction as if they were a single instruction.

If abreakpoint isplaced on adelay slot instruction, execution will stop at thejump
or branch preceding the delay slot instruction, and TotalView will not know that
itisat abreakpoint. At this point, attempting to continue the thread which hit the
breakpoint without first removing the breakpoint will cause the thread to hit the
breakpoint agai n without executing any instructions. Before continuing thethread,
you must remove the breakpoint. If you need to reestablish the breakpoint, you
might then use the instruction step command to execute just the delay slot
instruction and the branch.

A breakpoint placed on adelay slot instruction of a“branch likely” instruction will
be hit only if the branch is going to be taken.

354 TotaView User's Guide



Intel-x86

| ntel-x86
Intel-x86 TotalView displays the Intel-x86 general registers in the stack frame pane of the
General process wi pdow. Table 59 dwc_ri bes how 'I_'otaIView treats each general register,
. and the actions you can take with each register.
Registers
Table59. Intel-x86 Genera Registers
Specify in
Register Description DataType Edit Dive Expression
EAX General registers <void> yes  yes $eax
ECX <void> yes yes $ecx
EDX <void> yes  yes $edx
EBX <void> yes  yes $ebx
EBP <void> yes yes $ebp
ESP <void> yes yes $esp
ESI <void> yes  yes Pesi
EDI <void> yes yes $edi
Cs Selector registers <void> no no $cs
SS <void> no no $ss
DS <void> no no $ds
ES <void> no no $es
FS <void> no no $fs
GS <void> no no $gs
EFLAGS <void> no no $eflags

TotalView User's Guide 355



APPENDIX C: Architectures

Table59. Intel-x86 General Registers (Continued)

Specify in

Register  Description DataType Edit Dive Expression

EIP Instruction pointer <code>[] no yes $eip

FAULT <void> no no $fault

TEMP <void> no no $temp

INUM <void> no no $inum

ECODE <void> no no $ecode
Intal-x86 TotaIVieV\_/ displaysthe x86 fl oat.i ng-point registe_rs in the stack framg pane qf the
Floating-Point [ Tatebodertes o Ty rets g o
Registers
Table60. Intel-x86 Floating-Point Registers

Specify in

Register  Description DataType Edit Dive Expression

STO ST(0) <extended> yes yes $st0

ST1 ST(1) <extended> yes yes Pstl

ST2 ST(2) <extended> vyes yes $st2

ST3 ST(3) <extended> yes yes $st3

ST4 ST(4) <extended> yes yes $st4

ST5 ST(5) <extended> vyes yes $st5

ST6 ST(6) <extended> yes yes $st6

ST7 ST(7) <extended> vyes yes Pst7

FPCR Floating-point control register <void> yes no $fper

356 TotaView User's Guide



Intel-x86

Table60. Intel-x86 Floating-Point Registers (Continued)

Specify in
Register  Description DataType Edit Dive Expression
FPSR Floating-point status register <void> no no $fpsr
FPTAG Tag word <void> no no $fptag
FPIOFF Instruction offset <void> no no $fpioff
FPISEL Instruction selector <void> no no $fpisel
FPDOFF  Dataoffset <void> no no $fpdoff
FPDSEL  Dataselector <void> no no $fpdsel

Intel-x86 FPCR  Foryour convenience, Total View interpretsthe bit settings of the FPCR and FPSR
R egi Ster registers.

Y ou can edit the value of the FPCR and set it to any of the bit settings outlined in
Table 61.

Table61. Intel-x86 FPCR Register Bit Settings

Value Bit Setting Meaning

RC=NEAR 0x0000 To nearest rounding mode

RC=NINF 0x0400 Toward negative infinity rounding mode
RC=PINF 0x0800 Toward positive infinity rounding mode
RC=ZERO 0x0c00 Toward zero rounding mode

PC=SGL 0x0000 Single precision rounding

PC=DBL 0x0080 Double precision rounding

PC=EXT 0x00c0 Extended precision rounding

EM=PM 0x0020 Precision exception enable

TotalView User's Guide 357



APPENDIX C: Architectures

Table6l. Intel-x86 FPCR Register Bit Settings (Continued)

Value Bit Setting M eaning

EM=UM 0x0010 Underflow exception enable

EM=0OM 0x0008 Overflow exception enable

EM=ZM 0x0004 Zero divide exception enable

EM=DM 0x0002 Denormalized operand exception enable
EM=IM 0x0001 Invalid operation exception enable

Usi ng thelntgl- Youcanchangethe value of the FPCR within Total View to customize the
x86 FPCR exception handling for your program.

Regl ster For example, if your program inadvertently divides by zero, you can edit the bit
setting of the FPCR register in the stack frame pane. Inthis case, youwould change
the bit setting for the FPCR to include 0x0004 (as shown in Table 61) so that
TotalView trapsthe “divide by zero” bit. The string displayed next to the FPCR
register should now include EM=(ZM). Now, when your program divides by zero,
it receives a SIGFPE signal, which you can catch with TotalView. See Chapter 3
of the Total View User’s Guide for information on handling signals. If you did not
set the bit for trapping divide by zero, the processor would ignore the error and set
the EF=(ZE) bit in the FPSR.

Intel-x86 FPSR  The bit settings of the Intel-x86 FPSR register are outlined in Table 62.
Register

Table62. Intel-x86 FPSR Register Bit Settings

Value Bit Setting M eaning

TOP=<i> 0x3800 Register <i>istop of FPU stack
B 0x8000 FPU busy

Co 0x0100 Condition bit 0

358 TotaView User's Guide



Intel-x86

Table62. Intel-x86 FPSR Register Bit Settings (Continued)

Value Bit Setting M eaning
C1 0x0200 Condition bit 1
c2 0x0400 Condition bit 2
C3 0x4000 Condition hit 3
ES 0x0080 Exception summary status
SF 0x0040 Stack fault
EF=PE 0x0020 Precision exception
EF=UE 0x0010 Underflow exception
EF=0OE 0x0008 Overflow exception
EF=ZE 0x0004 Zero divide exception
EF=DE 0x0002 Denormalized operand exception
EF=IE 0x0001 Invalid operation exception
Intal-x86 The Intel-x86 processor supports the | EEE floating point format.
Floating-Point
For mat

TotalView User's Guide 359



APPENDIX C: Architectures

360 TotaView User'sGuide



Glossary

action point

address space

automatic process

acquisition

breakpoint

child process

cluster debugging

corefile

cross debugging

data-set

A point in aprogram where abreakpoint, eval uation point, or event point has been
set during a TotalView session.

A region of memory that contains code and data from a program. One or more
threads can run in an address space. A process normally contains an address space.

TotalView automatically detects the many processes that parallel and distributed
programsrun in and attachesto them automatically so you don’'t haveto attach to
them manually. Thisprocessiscalled automatic processacquisition. If the process
ison aremote machine, automatic process acquisition also automatically startsthe
TotalView debugger server.

A point in a program where execution can be conditionally suspended to permit
examination and manipulation of data.

A process created by another process (see parent process) when that other process
callsfork().

Theaction of debugging aprogramthat isrunning onacluster of hostsinanetwork.
Typically, the hosts are homogeneous.

A filecontaining thecontentsof memory andalist of thread registers. Theoperating
system dumps (creates) a core file whenever a program exits because of a severe
error (such as an attempt to store into an invalid address).

A special case of remotedebugging wherethehost platform and thetarget platform
are different types of machines.

A set of array elements generated by TotalView and sent to the Visualizer.

TotalView User's Guide 361



dbelog library

dbfork library

debugger server

distributed debugging

dive stack

diving

editing cursor

elog library

evaluation point

event log

event point

A library of routinesfor creating event pointsand generating event logsfromwithin
TotalView. To use event points, you must link your program with both the dbelog
and elog libraries.

A library of specia versionsof thefor k() and execve() callsused by the Total View
debugger to debug multiprocess programs. Programs that call one of the fork(),
vfork(), or execve() routines must be linked with the dbfork library.

See the glossary entry for tvdsvr process.

The action of debugging a program that is running on more than one host in a
network. The hostscan be homogeneousor heterogeneous. For example, programs
written with message passing libraries such as Parallel Virtual Machine (PVM) or
Parallel Macros (PARMACS) run on more than one host.

A series of nested dives that were performed in the same variable window. The
number of right angle brackets (>) in the upper left hand corner of avariable
window indicatesthe number of nested diveson the dive stack. Each timethat you
undive, TotalView popsadive from the dive stack and decrements the number of
right angle brackets shown in the variable window.

Theaction of displaying moreinformation about anitem. For example, if you dive
into avariable in TotalView, awindow appears with more information about the
variable.

A black rectangle that appearswhen aTotal View field is selected for editing. You
use field editor commands to move the editing cursor.

A library of routines for generating event logs from multiprocess programs. The
event logs can be displayed and analyzed with the Gist application.To use event
points, you must link your program with both the dbelog and elog libraries.

A point in the program where Total View evaluates a code fragment without
stopping the execution of the program.

A file containing arecord of events for each processin a program.

A point in the program where Total View writes an event to the event log for later
analysisusing Gist.

362 TotaView User's Guide



extent

field editor

gridget

host machine

lower bound

message queue

MPICH

mutex

native debugging

nested dive window

parcel

parent process

PARMACS ibrary

Glossary

The number of elementsinthedimension of an array. For example, aFortran array
of integer(7,8) has an extent of 7 in one dimension (7 rows) and an extent of 8in
the other dimension (8 columns).

A basic text editor that is part of TotalView’ sinterface. The field editor supports
asubset of GNU Emacs commands.

A dotted grid in the tag field that indicates you can set an action point on the
instruction.

The machine on which the TotalView debugger is running.

Thefirst element in the dimension of an array or the slice of an array. By default,
the lower bound of an array isOin C and 1 in Fortran, but the lower bound can be
any number, including negative numbers.

A list of messages sent and received by message passing programs.

M PI/Chamel eon (M essage Passing | nterface/ Chamel eon, most commonly referred
toasMPICH) isafreely-available and portable MPI implementation. MPICH was
written as a collaboration between Argonne National Lab and Mississippi State
University. For more information, see http://www.mcs.anl.gov/mpi.

Mutual exclusion. A collection of techniquesfor sharing resources so that different
uses do not conflict and cause unwanted interactions.

The action of debugging a program that is running on the same machine as
TotalView.

A TotaView window that results from diving into an item in avariable window.
A nested dive window replaces the contents of the variable window and has an
undive symbol in itstitle bar. Diving on the undive symbol returns the original
contents of the variable window.

The number of bytes required to hold the shortest instruction for the target
architecture.

A processthat callsfork() to spawn other processes(usually called child processes).

A message passing library for creating distributed programs that was devel oped
by the German National Research Centre for Computer Science.

TotalView User's Guide 363



process

process group

process window

program group

PVM library

remote debugging

root window

serial line debugging

sharegroup

signals

single step

dice

Consistsof anaddressspaceand alist of oneor morethreadsrunninginthat address
space.

A group of processes associated with a multiprocess program. Includes program
groups and share groups.

Themain Total View window for aprocess, which consists of three panes: the stack
trace, the stack frame, and the source code for the program.

A group of processes that includes the parent process and all related processes. A
program group includes children that were forked (processes that share the same
source code as the parent) and children that were forked with a subsequent call to
execve() (processesthat do not share the same source code asthe parent). Contrast
with share group.

Parallel Virtual Machinelibrary. A message passing library for creating distributed
programs that was developed by the Oak Ridge National Laboratory and the
University of Tennessee.

The action of debugging a program that is running on a different machine than
TotalView. The machine on which the program is running can be located many
miles away from the machine on which TotaView is running.

A TotalView window displaying the process ID, status (e.g., at breakpoint or
stopped), name, and current routine executing for each process being debugged.

A formof remotedebuggingwhere Total View andthe Total View Debugger Server
communicate over aseria line.

A group of processes that includes the parent process and any related processes
that share the same source code as the parent. Contrast with program group.

M essagesinforming processes of asynchronousevents, such asseriouserrors. The
action the processtakesin responseto the signal depends on thetype of signal and
whether or not the program includes asignal handler routine, aroutine that traps
certain signals and determines appropriate actions to be taken by the program.

The action of executing asingle statement and stopping (asif at a breakpoint).
A subsection of an array, which is expressed in terms of alower bound, upper

bound, and stride. Displaying adlice of an array can be useful when working with
very large arrays, which is often the case in Fortran programs.

364 TotaView User'sGuide



stack

stack frame

stack trace

stride

symbol table

tagfield

target machine

thread

tvdsvr process

undiving

upper bound

Glossary

A portion of computer memory and/or registers used to hold information
temporarily. The stack consists of alinked list of stack frames that holds return
locations for called routines, routine arguments, local variables, and saved
registers.

A section of the stack that contains the local variables, arguments, contents of the
registers used by an individual routine, aframe pointer pointing to the previous
stack frame, and the value of the Program Counter (PC) at thetimetheroutinewas
caled.

A sequential list of each currently activeroutine called by aprogram and theframe
pointer pointing to its stack frame.

Theinterval between array elementsin adlice and the order in which the el ements
aredisplayed. If thestrideis 1, every el ement between the lower bound and upper
bound of the dliceisdisplayed. If the strideis 2, every other element is displayed.
If thestrideis—1, every e ement between the upper bound and lower bound (reverse
order) is displayed.

A table of symbolic names (such as variables or functions) used in a program and
their memory locations. The symbol tableispart of the executabl e object generated
by the compiler (with the —g switch) and is used by debuggersto analyze the
program.

The left margin in the source code pane of the TotalView process window
containing boxed line numbers marking the lines of source code that actually
generate executabl e code.

The machine on which the process to be debugged is running.

An execution context that normally contains a set of private registersand aregion
of memory reserved for an execution stack. A thread runsin an address space.

The Total View Debugger Server process, which facilitates remote debugging by
running onthesamemachi neasthe executableand communicatingwith Total View
over aTCP/IP port or serial line.
Theaction of displaying the previous contents of awindow, instead of the contents
displayed for the current dive. To undive, you dive on the undiveicon in the upper
right-hand corner of the window.

Thelast element in the dimension of an array or the slice of an array.

TotalView User's Guide 365



variable window A TotaView window displaying the name, address, datatype, and value of a
particular variable.

visualizer process A process that works with TotalView in a separate window allowing you to see a
graphical representation of program array data.

366 TotaView User'sGuide



| ndex

Symbols

$visualize 103, 109
, (comma), in specifying arange of addresses 150

. (period)
in suffix of process names 129
repeat last text search 31

.pghpfrc file 105

.rhosts 83

.stb file 106

.stb files 106, 271

.stx file 106, 109

Stx files 271

/ (dash) search for strings 31

/proc file system 323

: (colon), in array type strings 156

> (right angle bracket), indicating nested dives 153
? (question) in shortcut key for Help command 19
\ (backslash) search backward for strings 31
 (ascicircum) as symbol for Control (Ctrl) key 39
\(caret), to indicate Ctrl key 111

AZ 111

A
—aoption 37, 288

accelerator keys
See also shorteut keys

action points
action points window 266
definition 7, 361
deleting 213
disabling 213
enabling 213
loading automatically 294
machine level 120
saving 215, 296
slow performance 261
suppressing 214
types of 7
unsuppressing 214
window 211

addresses
address space, definition 361
changing 162
of machineinstructions 120, 163
retracing 265
specifying in variable window 150
tracking in variable window 148
AIX
linking C++ to dbfork library 317
linking to dbfork library 317
shared libraries 329
swap space 326

AlX operating system
list of supported compilers 304

allocated arrays, displaying 161

TotalView User's Guide 367



Index

Alpha
architecture 345
floating-point format 347
floating-point registers 346
FPCR register 346
generd registers 345

AlphaDigital UNIX

condition variable window 184

mutex 181
angle brackets, in windows 153
animation

using $visualize 240
architectures 333

Alpha 345

Intel-x86 355

MIPS 348

Power 334

PowerPC 334

SPARC 340

areas of memory, data type 160

arguments
for totalview command 287
for tvdsvr command 300
in server launch command 66, 68
passing to program 37
setting 54

argv array, displaying 161

arrays
character 160
declared versus allocated 161
displaying 171
displaying argv 161
displaying contents 28
displaying slices 172
lower bound 156
type strings for 156
upper bound 156
visualizing 236

—arrow_bg_color option 288
—arrow_color option 288

Assembler
constructs 224

368 TotalView User's Guide

display symbolically 268
examining 120
assembler
and —g compiler switch 28
Assembler Display Mode command 120
asynchronous thread control 135
at breakpoint state 48
attaching
remote processes, by diving 62
remote processes, by node 61
to MPICH application 79

to processes 40
to PVM task 100

Auto Visualize
in Directory Window 243

auto-launch feature

(figure) 65
changing options 65, 277
description 64
disabling 69

automatic process acquisition
definition 361

B

B state 48

—background option 288

—barr_stop_all option 289

barrier breakpoint See process barrier breakpoint 201
barrier breakpoints 7

—barrier_color option 288
—barrier_font_color option 289

—bg option 288

bit fields 153

bookmarks 211

—break_color option 289

Breakpoint at L ocation command 193
breakpoints 7



and MPI_Init() 84

clearing 17

conditional 205, 207, 219
copy, master to slave 78
countdown 207, 219
definition 361

in action points window 211
listing 23

loading automatically 265
machine level 120

saving 215, 265

set, while running parallel tasks 84
setting 17, 190, 197

sharing 199

slow performance 261
supported in TotalView 133
thread specific 218

built-in

intrinsic variables
$clid 218
$duid 218
$nid 218
$pid 218
$processduid 218
$oystid 218
$tid 218
statements
$count 219
$countall 220
$countprocess 219
$countthread 219
$stop 219
$stopall 219
$stopprocess 219
$stopthread 219
$visualize 220, 239
type strings 158

—button_bg_color option 289
—button_fg_color option 289
buttons

EVAL 216
undive 152

C

C language
array bounds 156
file suffixes 119
in evaluation points 221
type strings
parameter in . Xdefaults file 267
supported 154

C shell 324
C++ demangler 290

C++ programs
including libdbfork.h 317

—callback option 66, 300
case sensitive searches 277
casting examples, types 161
casting, types of variable 154

changing
auto-launch options 65
program groups 131
variables 153

characters, arrays of 160
—chase option 289

child processes
definition 361
names 129

Clear All STOP and EVAL command 213

clearing 133
breakpoints 197

$clid intrinsic variable 218

Close
in Data Window 245

Close All Similar Windows command 152
Close Window (g) command 19

Close Window command 152

closing variable windows 152

cluster debugging 61, 64
definition 361

Index

TotalView User's Guide 369



Index

code constructs supported
Assembler 224
c221
Fortran 222

<code> data type 160
<code> type string 163
—color option 289

command line option
launch Visualizer 254
totalview 288
tvdsvr 300

commands 37

. (Reexecute Last Search) 31

/ (Search for String) 31

\ (Search Backward for String) 31

arguments 54

Assembler Display Mode 120

Breakpoint at Location 193

change Visualizer launch 235

Clear All STOP and EVAL 213

Close All Similar Windows 152

Close Window 152

configure, MPICH 77

Control-? (help) 19

Control-C (cancel) 19

Control-L (refresh) 19

Control-Q (quit) 19, 33

Control-R (raise root window) 19

Create Process (without starting it) 125

Current Stackframe 122

Delete Program 144

Detach from Process 43

Display Assembler by Address 120

Display Assembler Symbolically 120

display menu 17

dive 17

Duplicate Window 153

Edit Source Text 122

Editor Launch String 123

Find Interesting Relative 132

for Data Window

Directory, New Base Window, Options, Delete

245

for Directory Window

370 TotalView User's Guide

View, Graph, Surface, File, Delete 243
for Graph Data Window
Lines, Points, Transpose 248
for Surface Data Window
Mesh, Shade, Contour, Zone, Auto Reduce, Re-
set Viewp 253
Fortran Modules Window 167
Function or File 116, 122
Global Variables Window 149
Go Group 124
Go Process 124
Go Thread 125
group or process 111
Halt Group 127
Halt Process 127
Halt Thread 127
Hold Group 128
Hold/Release Process (w) 128
input and output files 56
Input from File 56
Interleave Display Mode 120, 143
Interleave Display Mode command 143
menu
Close Window (q) 19
Help 19
Quit Debugger (g) 33
Reexecute Last Save Window 33
Save Window to File 33
Message State Window (m) 87
New Base Window 153
New Program Window 38, 42, 44, 63
Next (instruction) 138
Next (instruction) Group 138
Next (instruction) Thread 138
Next (source line) 138
Next (source line) Group 138
Next (source line) Thread 138
Open Action Points Window 211
Open Expression Window 216
Output to File 56
poe 78, 82
pvm 96, 98
Release Group 128
Reload Executable File 39
Restart Program 145
Return (out of function) 139



Return (out of function) Group 139
Return (out of function) Thread 139
rsh 67, 83

Run (to selection) 138

Run (to selection) Group 138
Run (to selection) Thread 138
Save All Action Points 215
Server Launch Window 70
server launch, arguments 66

Set Command Arguments 54

Set Continuation Signal 43, 142
Set Environment Variables 55
Set PC to Absolute Value 144
Set PC to Selection 143

Set Process Program Group 132
Set Search Directory 52

Set Signal Handling Mode 50
Shift-Return (exit field editor) 19
Show All Process Groups 130
Show All PVM Tasks 100

Show All Unattached Processes 40
Show Event Log Window 57
single stepping 137

Source Display Mode 120

Step (instruction) 137

Step (instruction) Group 137
Step (instruction) Thread 137
Step (source line) 125, 137

Step (source line) Group 137
Step (source line) Thread 137
Suppress All Action Points 214
Toggle Laminated Display 177

Toggle Thread Laminated Display 177

totalview 16, 37

command-line options 264

corefiles 37, 43

syntax and use 287
tvdsvr 64, 277

launching 66

syntax and use 299
Unsuppress All Action Points 214
Update Process Info 127
Update PVM Task List 100
Variable 148, 149, 150, 176
visualize 235, 254
Visualize (v) 237

Visualize Distribution 109
Visualize ownership information 109
xrdb 263

common blocks, displaying 166
compiled expressions 209

compiler options
-g switch 16, 28, 310
-compiler_vars option 289
compiling
debugging symbols 310
HPF code 106, 310, 313, 315
on AlX 310
on Digital UNIX 312
with exception data 316
on IRIX 313
on SunOS 4 314
on SunOS 5 315
programs 16
switch, library 36

conditional breakpoints 7, 205, 207, 219
configure command 77

continuing
with asignal 142

control registers, interpreting 124

Control-? (help) command 19

Control-C 111

Control-C (cancel) command 19

Control-L (refresh) command 19

Control-Q (quit) command 19, 33
Control-R (raise root window) command 19
copy and paste text 29

corefiles

definition 361

examining 43

in totalview command 37, 43
$count 209
$count statement 219

$countall statement 220

TotalView User's Guide 371



Index

countdown breakpoints 207, 219

$countprocess statement 219

$countthread statement 219

CPU registers 124

Create Process (without starting it) command 125

creating processes
and starting them 124
errors 260
new 39
using Step (source line) 125
without starting them 125

cross debugging
definition 361

CTRL-Z 111
customizing TotalView 263

D

data
surface data, manipulation 253
viewing, from Visualizer 246

datasizelimit in C shell 324

data types
to visualize 236

Data Window 244
Visualizer, display commands 245

data-set
definition 361
header fields 256

dbelog library 362

dbfork library
definition 362
linking with 36, 317
syntax 290

—dbfork option 290

deadlocks
message passing 87

—debug_file option 290, 300
debugger

372 TotalView User's Guide

third party and Tota View Visualizer 233

debugger server 64, 277, 299

debugging

HPF code 107, 293
multiprocess programs 36
programs that call execve 36
programs that call fork 36
PVM applications 95
remote processes 60
symbols

AIX 310

Digital UNIX 312

IRIX 313

SunOS 4 314

SunOS 5 315

declared arrays, displaying 161

delay doy instructions
MIPS 353

Delete
in Data Window 245
in Directory Window 243

Delete Program command 144

deleting
action points 213
processes 205

—demangler option 290
Detach from Process command 43

dialog box
spelling corrector 32

dialogs
action point options 212
attach to process 42
behavior of 267, 293
change process group 132
debug remote process 60
environment variables 56
input from file 57
launch debugger server 69
load new program 38
location of 289
output to file 57
seria line debugging 74



set command arguments 54
set search directory 53
set signal handling mode 50

Digital UNIX
/proc file system 323
linking to dbfork library 318
list of supported compilers 305
shared libraries 329
swap space 325

dimmed information, in the root window 140
directories, setting order of search 52

Directory
in Data Window 245

Directory Window

menu commands 242
disabling

action points 213

auto-launch feature 69, 277

PVM support 96, 98, 268, 276, 296
disassembly, in variable window 163
Display Assembler by Address command 120
Display Assembler Symbolically command 120
—display option 291
displaying

areas of memory 150

argv array 161

array 28

arrays 171, 172

common blocks 166

data 17

global variables 149

HPF distributed array node 293

pointer 28

source 17

stack trace pane 28
variable 28

displaying data 8
displaying source 28
Dist 108

distributed debugging

definition 362

remote processes 60

remote server 64

See also PVM applications
dive

button 17

nested 28
dive stack, definition 362
diving 8

definition 153, 362

dive button 17

in source code 116

into a pointer 28

into a process or thread 28

into a stack frame 28

into avariable 28

into Fortran common blocks 166

into global variables 149

into processes 130

into PVM tasks 101

into registers 148

-dpvm option 291

—dpvm option 300

$duid intrinsic variable 218
—dump_core option 291
Duplicate Window command 153
—dynamic option 291

E

E state 47
Edit Source Text command 122
editing
cursor
definition 362

source text 122
type strings 154

editor launch string 122
Editor Launch String command 123
elog library 362

Index

TotaView User’'s Guide 373



Index

enabling
action points 213
PVM support 96, 98, 268, 276, 296

environment variables 55
before starting poe 82
LD_LIBRARY_PATH 318, 319
PGI 104

error state 47
—error_color option 292
errors 259

EVAL
evaluation points 8
HPF restriction 103
sign 17

Eval button 216
—eval_color option 292
evaluating expressions 215

evaluation points 8
Assembler constructs 224
C constructs 221
clearing 17
commands 219
defining 205
definition 362
examples 207
Fortran constructs 222
listing 23
machine level 120, 205
setting 17, 206
slow performance 261

event log
definition 362
window 57, 269

event points
definition 362
listing 23
examining
corefiles 43
process groups 130
source and Assembler code 120
stack trace and stack frame 148

374 TotalView User's Guide

status and control registers 124
exception enable modes 124

executing
out of function 139
to aselected line 138
to the completion of afunction 139

execve() 317
attaching to processes 40
debugging programs that call 36
failure of 260
setting breakpoints with 199
Exit
in Directory Window 243
exiting TotalView 33

expression evaluation window
compiled and interpreted expressions 209
discussion 215
location 269
expression system
Alpha 331
Power 330

—ext option 292

extent
definition 363

F

f77
generated 109

fatal errors 324
—fg option 292

field editor
copy and pasting text 29
definition 363
editing cursor(figure) 29
ending session 19
fields
for date-set headers 256
file
include/visualize.h 256



files
libdbfork.h 317

Find Interesting Relative command 132
finding functions 116

flags
—g 106, 261
—no_hpf 109

floating-point format
Alpha 347
Intel-x86 359
MIPS 353
Power 339
PowerPC 339
SPARC 344

—fn option 292

—font option 292

fonts, in .Xdefaults file 269
—foreground option 292

fork() 317
debugging programs that call 36
setting breakpoints with 199

Fortran
array bounds 156
common blocks 166
debugging modules 168
deferred shape array types 169
file suffixes 119
in evaluation points 222
module data, displaying 167
pointer types 170

type strings, supported by TotalView 154

user defined types 169

Fortran Modules Window command 167

Fortran77
debugging generated 109

functions, finding 116

G
—g compiler option 36
—g flag 106, 261

generated Fortran77 109
generating a symbol table 36

global variables
diving into 149
window
discussion 150
window location syntax 270

Global Variables Window command 149

-global _types option 292
Go Group command 124
Go Process (g) command 86
Go Process command 124
Go Thread command 125
goto statements 205
—grab option 37, 293
—grab_server option 293
Graph
in Directory Window 243
Graph Data Window 247
commands 248
manipulations

Scale, Trandate, Zoom, Reset View, Query 248

graphs
manipulating, in Visualizer 248

gridget 120

group
holding processes 128
releasing processes 128

groups, definition 125

H

Halt Group command 127

Halt Process command 127

Halt Thread command 127

handling signals 48, 97, 98, 278, 297

header fields
data-sets 256

TotaView User’'s Guide 375



Index

Help command 19

help window 14

displaying 19
location 271

hexadecimal address, specifying in variable window 150

Hold Group command 128

hold process 128

Hold/Release Process (w) command 128
host machine, definition 363

hostname
for tvdsvr 37, 60, 61, 300
in root and process windows 45

HPF
advantages 108
compiling for debugging 106, 310, 313, 315
debugging 107
display node of array element 271
Dist 108
enable debugging at source level 271
EVAL restriction 103
installing Total View for 104
Repl 108

HPF applications 103
—hpf option 271, 293
HPF_MPICH 105
—hpf_node 108
-hpf_node option 293
—hpf_node option 293

| state 47

—icc option 293

idle state 47
—ignore_control_c option 293
in expression 209

In Kernel 48
include/visualize.h 256

376 TotalView User's Guide

input files, setting 56
installing TotalView for 104
instructions, displaying 151, 163

Intel-x86

architecture 355
floating-point format 359
floating-point registers 356
FPCR register 357

using the 358
FPSR register 358
general registers 355

Interleave Display Mode command 120
interpreted expressions 209

intrinsic variables 218
$clid 218
$duid 218
$nid 218
$pid 218
Pprocessduid 218
$systid 218
$tid 218
IRIX
Iproc file system 323
linking to dbfork library 319
list of supported compilers 306
shared libraries 329
swap space 328

—iv option 294

K

K state, unviewable 48
-kec_classes option 294

keyboard accelerators
See also shortcut keys

Keys
Arrow keys 26
scroll 26

keys
Control-C (cancel) 19
Control-L (refresh) 19



Index

Control-Q (quit) 19 new executables 38, 60
ControI.-R (raise root window) 19 local variables, diving into 148
remapping 330 )
Shift-Dive 22, 24 lower bound, of array slices 172
Shift-Return (exit field editor) 19
keysym 330 M
M state 47
L machine instructions
labels, for machine instructions 163 datatype 160
) . displaying 151, 163
laminated variables 177
master process
launch recreating slave processes 111
syntax tvdsvr 277 )
TotalView Visualizer —mc option 294
configuring 234 memory
from command line 254 displaying areas of 150
tvdsvr 64, 277, 299 out of, error 260
—Ib option 294 menu 17
libdbfork.a317 mouse button 17
libdbfork.h file 317 menu commands
) ) See also commands, menu
libraries shortcut keys 18
dbelog 362 )
dbfork 36, 290, 362 —menu_arrow_color option 294
dynamic 102 menus
elog 362 (figure) 18
libtvhpf.so 104 blank menus 294
loading dynamic 104 caching 294
shared 291, 329 customizing behavior of 276
libtvhpf.so library 104 message
license manager 259 definition of message queue 363
o envelope information 92
linking _ reserved tags 102
C++ and d_bfork library 317 troubleshooting 259
to dbfork library 317 .
L . message passing deadlocks 87
linking to dbfork library )
AlIX 317 Message Passing Interface/lChamelon Standard. See
Digital UNIX 318 MPICH
IRIX 319 Message State Window command 87
Sun0S 4 318 -m e_gueue option 294
SunOS 5 319 eSAge_queue op
loading MIPS

architecture 348

action points 265, 294 delay dot instructions 353

TotalView User's Guide 377



Index

FCSR register 351 loading new executables 61
using the 353 process groups 129
floating-point format 353 setting and clearing breakpoints 197
floating-point registers 351 multithreaded programs 13
generd registers 348
SR register 349 mutex 185
. definition 363

mixed state 47 window 181

—Mkeepftn flag 106, 109

modules N

debugging, Fortran 168 .
displaying data, Fortran 167 —n option, of rsh con-wmand 68
mounting /proc file system 323 names, of processes in process groups 129
native debugging

definition 363

native programs 2

—mouse_bg_color option 295
—mouse_fg_color option 295

MPI -

. . navigating

Ilbrary, internal state 87 source code 122
MPI_Init() 78 navigation controls 17
MPICH 76-82 tion 289

attach from TotalView 79 —ncoption

copy of 77 nested dive 28

definition 363 nested dive window 153

HPF 105 definition 363

MPICH/ch_p4 112 .
MPICH files 80 network debugging 10

iles
) ~Pipg New Base Window

mpirun command 153

command 107 in Data Window 245

flagsto TotalView through 112 i
MPL_Init0) New Program Window command 38, 42, 44, 63

ni

and breakpoints 84 Next (instruction) command 138
—mqd option 294 Next (instruction) Group command 138
mtile 101 Next (instruction) Thread command 138
_Mtotalview flag 106, 261 Next (source line) command 138
_Mtv flag 106 Next (source line) Group command 138

-mult_color option 295 Next (source line) Thread command 138

multiprocess programs —nicc option 293
and signals 51 $nid intrinsic variable 218
attaching to 42 —nlb option 294

compiling 36

finding active processes 132 —hmc option 294

378 TotalView User's Guide



—no_barr_stop_all option 289
—no_chase option 289
—no_color option 289
-no_compiler_vars option 290
—no_dbfork option 290
-no_dpvm option 291
—no_dump_core option 291
—no_dynamic option 291
-no_global_types option 293
—no_grab option 293
—no_grab_server option 293
—no_hpf flag 109

-no_hpf option 293

—no_hpf option 271
—Nno_ignore_control_c option 293
—No_iv option 294
-no_kcc_classes option 294
—No_message_gueue option 294
—no_maqd option 294
-no_parallel option 295
—no_pop_at_breakpoint option 295
—No_pop_on_error option 295
—Nno_pvm option 96, 98, 296
—no_stop_all option 297

—no_tc option 297
—no_text_color option 297
—no_title_color option 297
-no_user_threads option 298

notes
bit fields 153

breakpoints apply to processes 190

changing global variables 125

copying text between windows 30
editing compound objects or arrays 157

editing type strings 154

how TotalView determines share group 131
interleave display mode 120

prefix for hexadecimal addresses 150
specifying search directories 53

variable window, tracking addresses 148
visualizer not on all platforms 231

—npr option 295
—nsb option 296

O

—O option 36

offsets, for machine instructions 163
opague type definitions 162

Open Action Points Window command 211
Open Expression Window command 216
operating systems 322

optimizations, compiling for 36

options
command line

hpf
—hpf 271
—hpf_node 108, 271
—no_hpf 271
—no_hpf_node 271

totalview 288

tvdsvr 300

for visualize 254
in Data Window 245
surface data display 251
tvdsvr
—callback 299
—serial 299
—server 299
—set_pw 299

override-redirect windows 275
P

-p4pg files 80
panes

Index

TotalView User's Guide 379



Index

location and size 273
Parallel Environment for AIX, See PE
-parallel option 295
Parallel Virtual Machine. See PVM
parent processes, definition 363
passing arguments 37
password, generated by tvdsvr 299
patching programs 207
PATH environment variable 52

PC
arrow 23
program counter 23

PE 82
and slow processes 113
from command line 83
from poe 83

performance
action points 261
interpreted, compiled expressions 209
of remote debugging 64

PGI HPF applications 103
$pid intrinsic variable 218
placing windows 276

poe command
and mpirun 78
and TotalView 83
arguments 82
onIBM SP 79
running PE 83
TotalView acquires poe processes 85

pointer 28

pointers
to arrays 155

—pop_at_breakpoint option 295
—pop_on_error option 295

pop-up menu 17

port number, for tvdsvr 37, 60, 61, 300
—port option 70, 300

380 TotalView User's Guide

Power
architecture 334
floating-point format 339
floating-point registers 336
FPSCR register 337

using the 339

general registers 334
MSR register 335

PowerPC
architecture 334
floating-point format 339
floating-point registers 336
FPSCR register 337

using the 339

general registers 334
MSR register 335

—pr option 295
preprocessors 292
primary thread, definition 134

procedures
attaching to processes 40, 61, 100
changing
auto-launch options 69
program groups 131
variables 153
compiling multiprocess programs 36
creating processes 124
debugging Fortran modules 168
debugging PVM applications 96
debugging setuid programs 261
deleting processes 144
disabling the auto-launch feature 69
displaying
argv 161
declared and allocated arrays 161
global variables 149
machine instructions 151, 163
memory 150
displaying Fortran module data 167
editing
addresses 162
source text 122
type strings 154
evaluating expressions 216



examining
corefile 43
source and Assembler code 120
stack trace and stack frame 148
executing
out of function 139
to aselected line 138
finding
interesting relatives 132
source code for functions 116
loading new executables 38, 60
patching programs 207
reloading executables 39
rereading symbol tables 39
restarting programs 145
saving action points 215
selecting source lines 136
Setting
breakpoints 197
breakpoints while running 190
command arguments 54
environment variables 55
evaluation points 206
input and output files 56
program counter (PC) 143, 144
search paths 52
signal handling mode 50
thread specific breakpoints 218
setting editor launch string 122
single stepping 137
into function calls 137
over function calls 138
starting processes 124
starting threads 124
starting tvdsvr 64, 70
stopping processes 127
stopping threads 127
synchronizing process 138
type casting 154
process
definition 14, 364
displaying data 28
slave, breakpointsin 78
starting 21

process acquisition, automatic 361

process barrier breakpoint 201
changes
when clearing 204
when setting 204
changing to ordinary breakpoint 204
deleting 204
setting 201
states 201

process groups window 5, 130

process window 5, 20-25
(figure) 21
definition 364
location 273
program counter 23

$processduid intrinsic variable 218

processes
acquiring in PVM applications 96
attaching to 40, 61, 100
child, definition 361
creating 124
creating new 39
deleting 144
detaching from 43
dimmed, in the root window 140
error creating 260
groups
changing 131
definition 364
examining 130
understanding 129
holding 128
in parallel job 78
loading new executables 38, 60
location of 45
master
restart 111
names 129
parent, definition 363
refreshing process info 127
releasing 128
reloading 39
remote 41
restarting 145
single stepping 133

Index

TotalView User's Guide 381



Index

starting 124

status of 44

stopping 127

stopping and deleting 205

processor number 45

program counter (PC)
arrow 23
setting program counter 143

program group
changing 131
definition 364
discussion 129

programs
compiling 36
deleting 144
native 2
restarting 145
setuid, debugging 261

pthread_mutexattr_settype np() 182

PVM applications
acquiring processes 96
debugging 95
dynamic libraries 102
enabling support 268, 276

message tags 102
search path 97
tasks 95, 96

pvm command 96, 98

—pvm option 96, 98, 296, 300, 301
pvm_joingroup() 102
pvm_spawn() 96

Q

gueueing mouse clicks 266
quitting TotalView 19, 33

R

—r option 296
R state 47

382 TotalView User's Guide

Reexecute Last Save Window command 33
Refresh Window (Control-L) command 19

registers
Alpha FPCR 346
diving into 148
floating-point
Alpha 346
Intel-x86 356
MIPS 351
Power 336
PowerPC 336
SPARC 341
general
Alpha 345
Intel-x86 355
MIPS 348
Power 334
PowerPC 334
SPARC 340
Intel-x86 FPCR 357
using the 358
Intel-x86 FPSR 358
interpreting 124
MIPS FCSR 351
using the 353
MIPS SR 349
Power FPSCR 337
using the 339
Power MSR 335
PowerPC FPSCR 337
using the 339
PowerPC M SR 335
SPARC FPSR 342
using the 344
SPARC PSR 341

relatives, definition 125
Release Group command 128
release process 128

Reload Executable File command 39

remapping keys 330
remote connection 63
remote debugging 64



(figure) 2, 65, 71

See also PVM applications
attaching to a process 61
connecting remote machine 63
connecting to a process 64
definition 10, 364

launching tvdsvr 64

loading a new executable 60
process location 45

tvdsvr command syntax 299

—remote option 37, 63, 296
Repl 108
rereading symbol tables 39

Reset View
in Surface Data Window 253

resources, for . Xdefaults file 263
Restart Program command 145

resuming
execution 124
processes with asignal 142

retracing addresses 265

Return (out of function) command 139

Return (out of function) Group command 139
Return (out of function) Thread command 139
right mouse button 8

root window 5, 20
(figure) 20
content of 45
definition 364
dimmed information 140
location 276
navigation 24
raising 19
rounding modes 124
rsh command 67, 83
Run (to selection) command 138
Run (to selection) Group command 138
Run (to selection) Thread command 138

running state 47

—running_color option 296

S

S state 47
Save All Action Points command 215
Save Window to File command 33
saving

action points 215, 265, 296
—sb option 296
scroll speed 26

scrolling
speed 276

Search Backward for String command 31
Search for String command 31

search paths
in . Xdefaultsfile 277
setting 52, 97

—search_port option 70, 301
select command 17
Select mouse button 17

selecting
Eval button 216
source code, by line 143
source line 136

sending sighals to program 51

seria line debugging
definition 364

—serial option 296, 301

server launch command 277

Server Launch Window command 70
—server option 70, 301

Set Command Arguments command 54
Set Continuation Signal command 43, 142
Set Environment V ariables command 55
Set PC to Absolute Value command 144
Set PC to Selection command 143

Index

TotalView User's Guide 383



Index

Set Process Program Group command 132
—set_pw option 66, 301
setting 133
barrier breakpoint 201
breakpoints 190, 197
command arguments 54
environment variables 55
evaluation points 206
HPF defaults, TotalView program 106
input/output files 56
search path 52, 97, 277
signal handling modes 51

setting up, debug session 35, 59, 75
setuid programs 261
shaded box, in tag field 120

share group
definition 364
determining members of 131
discussion 129

shared libraries 291, 329
AlX load function 329
dlopen function 329

sharing action points 199

Shift-Return command (exit field editor) 19
—shm option 297

shortcut keys 18

Show All Process Groups command 130
Show All PVM Tasks command 100

Show All Unattached Processes command 40
Show Event Log Window command 57
showing areas of memory 150

SIGALRM 113

—signal_handling_mode option 297

signals
continuing execution with 142
definition 364
handling in PVM applications 97, 98
handling in TotalView 48, 278, 297
SIGALRM 113

384 TotalView User's Guide

single process group window 131

single stepping
commands 137
continuation signals 142
definition 364
group-level 134
in anested stack frame 139
into function calls 137
machine instructions 137, 138
mulitprocess programs 134

operating system dependencies 134, 135, 139, 142

over function calls 138
process-level 134
recursive functions 139
return out of function 139
run to a selected line 138
slow performance 261
source line 137, 138

step group 134
thread-level 135

to aselected line 138

Sizing cursor (figure) 23
sleeping state 47
dlices

of arrays 172

when visualizing data 236

source code

examining 120

navigating 122
source code pane 259, 272, 279
Source Display Mode command 120

SPARC

architecture 340
floating-point format 344
floating-point registers 341
FPSR register 342

using the 344
general registers 340
PSR register 341

spelling corrector 280

stack
definition 365



frame
current 122
definition 365
examining 148
trace
definition 365
examining 148

stack trace pane
displaying source 28

standard input, and launching tvdsvr 68

starting
process 21
processes 124
threads 124
TotalView program 16, 37
tvdsvr 37, 64, 70, 99

state
and status 45
of processes and threads 45

status
and state 45
of processes 44
of threads 44

status registers, interpreting 124

stdin, redirect to file 56

stdout, redirect to file 56

Step (instruction) command 137

Step (instruction) Group command 137

Step (instruction) Thread command 137
Step (source line) command 137

Step (source line) Group command 137

Step (source line) Thread command 137

stepping 133
See also single stepping

$stop 209

STOPsign 17

STOP sign, for breakpoints 190
$stop statement 219

—stop_all option 297
—stop_color option 297
$stopall statement 219

stopped state 48
unattached process 47

—stopped_color option 297
stopping
processes 127, 205
threads 127
$stopprocess statement 219
$stopthread statement 219
stride, in array dlices 172
<string> data type 160
string search 31
strings, searching for by case 277
structures 157

suffixes
of processes in process groups 129
of source files 119

SunOS 4
key remapping 330
linking to dbfork library 318
list of supported compilers 307
shared libraries 329
swap space 326

SunOS 5
/proc file system 323
key remapping 330
linking to dbfork library 319
list of supported compilers 308
shared libraries 329
Swap space 327

SunOS5 Intel-x86
list of supported compilers 309

Suppress All Action Points command 214

Surface
in Directory Window 243

Surface Data Window 249
commands 253

Index

TotalView User’'s Guide 385



Index

display 251
manipulations 253
options 252

suspended windows 217
swap space 260, 324-328
switch-based communications 82

symbol tables
definition 365
rereading 39

$systid intrinsic variable 218

T

T state 47, 48

tab character 279

tag field 365

target machine, definition 365

tasks
attaching to 100
divinginto 101
PVM 95

—tc option 297

text
copy and paste in field editor 29
saving window contents 32

text string search 31
—text_color option 297
third party debugger and TotalView Visualizer 256

third party visualizer
and TotalView data set format 256

threads
definition 14
dimmed, in the root window 140
displaying source 28
ID format 22
listing 20, 22
single stepping 133
stack trace 22
starting 124
status of 44

386 TotalView User's Guide

stopping 127
thread-specific breakpoints 218
tid 182
$tid intrinsic variable 218

timeout
TotalView setting 83

—title_color option 297
Toggle Laminated Display command 177
Toggle Thread Laminated Display command 177

totalview command 16, 37, 43, 287
command-line options 264
description 287
environment variables 55
options 288
synopsis 287

TotalView program
corefiles 37
displaying data 8
displaying menus 17
distributed debugging 10
help window 14
host machine definition 10
HPF default settings 106
mouse buttons 17
quitting 33
shortcut keys 18
starting 16
starting a process 21
target machine definition 10
visualizing array data 9-10

TotalView Visualizer. 241-255
Sce also Visualizer

TotalView windows
action point List pane 23
displaying remote hostnames 22
editing cursor 29
EVAL sign 17
help 14
process 5, 2025
process groups 5
program counter arrow 23
refreshing 19



root 5, 19, 24

saving astext file 32
scroll speed 26
scrolling 25-27
selecting objects 17
setting breakpoints 17
sizing 23

Sizing cursor 23
Stack panes 22
STOPsign 17

Tag field (figure) 23
text string search 31
Thread List pane 22
variable 5

TotalView*hpf X resource 109
transient-for windows 281
troubleshooting iv, 259

tvdsvr
attaching to 101
launching 66
launching, arguments 68
—verbosity option 277

tvdsvr command 299, 365
auto-launch feature 64
description 299
enabling launch of 277
environment variables 55
options 300
password 299
starting 64, 277
synopsis 299
timeout while launching 68, 278
use with DPVM applications 300
use with PVM applications 96, 301

type casting 154
examples 161
type strings
built-in 158
editing 154
for opaque types 162
parameter in . Xdefaults file 267

typedef datatype 157

U

unattached processes
state 46
window
content of 45
discussion 41
undiving
definition 153, 365
from windows 153
icon 152

unions 157
Unsuppress All Action Points command 214
unwinding the stack 144
Update Process Info command 127
Update PVM Task List command 100
updating

visualization displays 238
upper bound, of array slices 172
-user_threads option 297

Vv

Valuefield 216

variable
displaying contents 28

Variable command 148, 149, 150, 176

variable window 5
condition 184
definition 366
discussion 148
displaying 148
duplicating 153
laminated display 177
|ocation 268
to display area of memory 151
tracking addresses 148

variables
changing the value 153
displaying al globals 149
intrinsic 218

Index

TotalView User's Guide 387



Index

laminated display 177
local, diving into 148

—verbosity option 66, 298, 302
tvdsvr 277

visualization
display data 232
extract data 232

Visualize 109
$visualize 239-240
visualize
command 255
Visualize (v) command 237
$visualize built-in statement 220
Visualize Distribution command 109
$visualize EVAL 108
visualize.h 256
Visualizer
choosing method for displaying data 246
data sets to visualize 236
Data Window 244
Directory Window 242
graphs
display 247, 248
manipulating 248
launch
command, change shell 235
configuring 234
from command line 254
options 234
window 234
surface data
display options 251
manipulating display 253
Surface Data Window 249
third party
adapting to 256
and Tota View Debugger 233
windows, types of 242
visualizer
process, definition 366
visualizing

388 TotalView User's Guide

and using slices 236
data 231
data sets
from afile 255
from variable window 237
in expressions using $visualize 239

visualizing data 242
<void> data type 160

w

waiters 185

windows 152
action points 211, 266
closing 152
data 244
Data Window 245
Directory Window 242
evaluation 269

See also expression eval uation window

event log 57, 269
expression 216
global variables 150, 270
graph data 247
help 271
machine instructionsin 151
offset between 269
override-redirect 275
problems with 259
process 273
process groups 130
PVM tasks and configuration 101
root, placing 276
single process group 131
Surface Data Window 249
suspended 217
transient-for 281
unattached processes 41
variable 148, 149, 151, 268
visualizer
launch 234
Windows, displaying New Base Window 153



X

X resource option 288
Xdefaultsfile 263

xep 101

xrdb command 263
—Xresource=value option 288

xterm
launching tvdsvr from 68
problems with 259

Z

Z state 47
zombie state 47

Index

TotalView User's Guide 389



	Contents
	List of Figures
	List of Tables
	CHAPTER 1: Introduction
	TotalView’s Advantages
	Figure�1.� Debugging a Remote Program with TotalVi...
	Figure�2.� Debugging a Distributed Program with To...

	TotalView’s Windows
	Figure�3.� Sample TotalView Session

	Examining Source and Machine Code
	Controlling Processes and Threads
	Using Action Points
	Examining and Manipulating Data
	Visualizing Array Data
	Distributed Debugging
	Figure�4.� The TotalView Debugger Server

	Multiprocess Programs
	Multithreaded Programs
	Context-Sensitive Help

	CHAPTER 2: TotalView Basics
	Compiling Programs
	Starting TotalView
	Using the Mouse Buttons
	Table�1.� Mouse Button Functions

	Using Menu and Keyboard Commands
	Figure�5.� Example TotalView Menu and Submenu

	Getting Help
	Using the Primary Windows
	Figure�6.� Root Window
	Starting A Process
	Figure�7.� Process Window
	Figure�8.� Program Counter

	Sizing Process Window Panes
	Figure�9.� The Sizing Cursor

	Navigating in the Process Window
	Figure�10.� Process Window Navigation Controls

	Navigating in the Root Window
	The Process Window Stack

	Scrolling Windows and Fields
	Scrolling Windows
	Figure�11.� Scroll Bar

	Scrolling Multiline Fields
	Figure�12.� Scrollable Multiline Field


	Diving into Objects
	Table�2.� Uses for Diving�

	Editing Text
	Figure�13.� Editing Cursor
	Table�3.� Field Editor Commands (Continued)

	Searching for Text
	Using the Spelling Corrector
	Figure�14.� Dialog Box for Spelling Corrector

	Saving the Contents of Windows
	Exiting from the TotalView Debugger

	CHAPTER 3: Setting Up a Debugging Session
	Compiling Programs
	Table�4.� Compiler Considerations�

	Starting the TotalView Debugger
	Loading Executables
	Loading a New Executable
	Figure�15.� New Program Window Dialog Box

	Reloading a Recompiled Executable

	Attaching to Processes
	Attaching Using Show All Unattached Processes
	Figure�16.� Unattached Processes Window

	Attaching Using New Program Window
	Figure�17.� New Program Window Dialog Box


	Detaching from Processes
	Examining a Core File
	Determining the Status of Processes and Threads
	Process Status
	Thread Status
	Figure�18.� Root Window Showing Process and Thread...

	Unattached Process States
	Table�5.� Summary of Unattached Process States�

	Attached Process States
	Table�6.� Summary of Attached Process and Thread S...


	Handling Signals
	Table�7.� Default Signal Handling Behavior
	Figure�19.� Dialog Box for Set Signal Handling Mod...

	Setting Search Paths
	Figure�20.� Dialog Box for Set Search Directory Co...

	Setting Command Arguments
	Figure�21.� Dialog Box for Set Command Arguments C...

	Specifying Environment Variables
	Figure�22.� Environment Variables Dialog Box

	Setting Input and Output Files ����
	Figure�23.� Dialog Box for Input from File Command...

	Monitoring TotalView Sessions
	Figure�24.� Event Log Window


	CHAPTER 4: Setting Up Remote Debugging Sessions
	Debugging Remote Processes
	Loading a Remote Executable
	Figure�25.� New Program Window Dialog Box

	Attaching to a Remote Process

	Connecting to Remote Machines
	Figure�26.� Remote Host Connection

	Starting the Debugger Server for Remote Debugging
	The Auto�Launch Feature
	Figure�27.� Auto-Launch Feature

	Auto-Launch Options
	The Server Launch Command �
	Changing the rsh Command
	Changing the Arguments
	The Connection Timeout
	Disabling Auto�Launch
	Changing the Options
	Figure�28.� Dialog Box for Launching Debugger Serv...


	Starting the Debugger Server Manually
	Figure�29.� Manual Launching of Debugger Server


	Debugging Over a Serial Line
	Figure�30.� TotalView Debugging Session over a Ser...
	Start the TotalView Debugger Server
	Starting TotalView on a Serial Line
	New Program Window
	Figure�31.� New Program Window Dialog Box



	CHAPTER 5: Setting Up Parallel Debugging Sessions
	Debugging MPI Applications
	Debugging MPICH Applications
	Starting TotalView on an MPICH Job
	Figure�32.� Dialog Box for Stopping Spawned Proces...

	Attaching to an MPICH Job
	Figure�33.� Processes that TotalView doesn’t own W...

	MPICH P4 procgroup Files

	Debugging Digital MPI Applications
	Starting TotalView on a Digital MPI Job
	Attaching to a Digital MPI Job

	Debugging IBM MPI (PE) Applications
	Preparing to Debug a PE Application
	Starting TotalView on a PE Job
	Setting Breakpoints
	Figure�34.� Parallel Tasks Dialog Box

	Starting Parallel Tasks
	Attaching to a PE Job
	Attach from a Node Running poe
	Attach from Node Not Running poe


	Debugging SGI MPI Applications
	Starting Totalview with SGI MPI
	Attaching to an SGI MPI Job

	Displaying Message Queue State
	Message Queue Display Basics
	Figure�35.� Message State Window

	Message Operations
	MPI Process Diving
	MPI Buffer Diving
	Pending Receive Operations
	Figure�36.� Message State Pending Receive Operatio...

	Unexpected Messages
	Figure�37.� Message State Unexpected Messages

	Pending Send Operations
	Figure�38.� Message State Pending Send Operation


	MPI Debugging Troubleshooting

	Debugging PVM and DPVM Applications
	Supporting Multiple Sessions
	Setting Up ORNL PVM Debugging
	Starting an ORNL PVM Session
	Starting a DPVM Session
	PVM/DPVM Automatic Process Acquisition
	Attaching to PVM/DPVM Tasks
	Figure�39.� PVM Tasks and Configuration Window

	Reserved Message Tags
	Debugging Dynamic Libraries
	Cleanup of Processes

	Debugging Portland Group, Inc. (PGI) HPF Applicati...
	Installing TotalView for HPF
	Dynamically Loaded Library
	Table�8.� PGHPF Dynamic Library Search Order (Cont...


	Setting Up PGHPF Compiler Defaults
	Setting Up MPICH
	Setting TotalView Defaults
	Compiling HPF for Debugging
	Starting HPF Programs
	PGHPF smp and rpm libraries

	Starting HPF Programs with MPICH
	Workstation Clusters Using MPICH
	IBM Parallel Environment

	HPF TotalView Advantages
	Figure�40.� Block Distributed Array on Three Proce...

	Debugging generated FORTRAN 77

	Parallel Debugging Tips
	General Parallel Debugging Tips
	MPICH Specific Debugging Tips
	IBM PE Specific Debugging Tips


	CHAPTER 6: Debugging Programs
	Finding the Source Code for Functions
	Figure�41.� Function Name Dialog
	Resolving Ambiguous Names
	Figure�42.� Dialog for Resolving Ambiguous Functio...


	Finding the Source Code for Files
	Source File Extensions
	Table�9.� Source Language Mapping�


	Examining Source and Assembler Code
	Table�10.� Ways to Display Source and Assembler Co...
	Figure�43.� Different Ways to Display Assembler Co...

	Current Stack Frame
	Editing Source Text
	Changing the Editor Launch String
	Interpreting Status and Control Registers
	Starting Processes and Threads
	Creating a Process without Starting it
	Creating a Process by Single-Stepping

	Stopping Processes and Threads
	Holding and Releasing Processes
	Examining Process Groups
	Types of Process Groups
	Figure�44.� Example of Program Groups and Share Gr...

	Displaying Process Groups
	Figure�45.� Process Groups Window
	Figure�46.� Single Process Group Window

	Changing Program Groups
	Figure�47.� Dialog for Changing Process Groups

	Finding Active Processes

	Setting a Breakpoint
	Single-Stepping
	Process-Level Single-Stepping
	Group-Level Single-Stepping
	Thread-Level Single-Stepping
	Thread-Level Control
	Selecting Source Lines
	Figure�48.� Dialog for Resolving Ambiguous Source ...


	Single-Step Commands
	Stepping Into Functions Calls
	Stepping Over Function Calls
	Executing to a Selected Line
	Executing to the Completion of a Function

	Displaying Thread and Process Locations
	Figure�49.� Dimmed Process Information in the Root...

	Continuing with a Specific Signal
	Setting the Program Counter
	Deleting Processes
	Restarting Programs

	CHAPTER 7: Examining and Changing Data
	Displaying Variable Windows
	Displaying Local Variables and Registers
	Figure�50.� Diving into Local Variables and Regist...

	Displaying a Global Variable
	Figure�51.� Variable Window for a Global Variable

	Displaying All Global Variables
	Figure�52.� Global Variables Window

	Displaying Areas of Memory
	Figure�53.� Variable Window for Area of Memory

	Displaying Machine Instructions
	Figure�54.� Variable Window with Machine Instructi...

	Closing Variable Windows

	Diving in Variable Windows
	Figure�55.� Nested Dives

	Changing the Values of Variables
	Changing the Data Type of Variables
	How TotalView Displays C Data Types
	Table�11.� Common Type Strings�
	If You Prefer C Cast Syntax
	Pointers to Arrays
	Arrays
	Typedefs
	Structures
	Unions

	Built-In Type Strings
	Table�12.� Built-In Type Strings (Continued)
	Character arrays (<string> data type)
	Areas of memory (<void> data type)
	Instructions (<code> data type)

	Type Casting Examples
	Example: Displaying the argv Array
	Example: Displaying Declared Arrays
	Example: Displaying Allocated Arrays


	Opaque Type Definitions
	Changing the Address of Variables
	Changing Type Strings to Display Machine Instructi...
	Displaying C++ Types
	Classes
	Figure�56.� Displaying Nested C++ Classes

	Changing Class Types in C++
	Figure�57.� C++ Type Cast to Base Class Dialog Box...
	Figure�58.� C++ Type Cast to Derived Class Dialog ...


	Displaying Fortran Types
	Displaying Fortran Common Blocks
	Figure�59.� Diving into Common Block List in Stack...

	Displaying Fortran Module Data
	Figure�60.� Fortran Modules Window

	Debugging Fortran 90 Modules
	F90 User Defined Type
	Figure�61.� Fortran 90 User Defined Type

	F90 Deferred Shape Array Type
	F90 Pointer Type
	Figure�62.� F90 Pointer Value

	Displaying Large Arrays

	Displaying Array Slices
	Slice Descriptions
	Strides
	Figure�63.� Slice Displaying the Four Corners of a...
	Figure�64.� Fortran Array with Inverse Order and L...

	Using Slices in the Variable Command
	Figure�65.� Variable Window for array2


	Displaying a Variable in All Processes or Threads
	Figure�66.� Laminated Scalar Variable
	Figure�67.� Laminated Variable at Different Addres...
	Figure�68.� Laminated Array and Structure
	Diving in a Laminated Pane
	Editing a Laminated Variable
	Visualizing a Laminated Data Pane

	Visualizing Array Data
	Displaying Mutex Information
	Figure�69.� Mutex Info Window
	Figure�70.� Mutex Data Window

	Displaying Condition Variable Information
	Figure�71.� Condition Variable Window


	CHAPTER 8: Setting Action Points
	Action Points
	Figure�72.� Action Point Symbols

	Setting Breakpoints
	Setting Source-Level Breakpoints
	Figure�73.� Breakpoint Symbol

	Selecting Ambiguous Source Lines
	Figure�74.� Ambiguous Source Line Selection Dialog...

	Diving into Ambiguous Source Lines
	Figure�75.� Ambiguous Source Line Dive Dialog Box

	Toggling Breakpoints at Locations
	Figure�76.� Toggle Breakpoint at Location Dialog B...
	Table�13.� Breakpoint at Location Actions�

	Toggling Breakpoints at Ambiguous Locations
	Figure�77.� Ambiguous Function Name Dialog Box

	Setting Machine-Level Breakpoints
	Thread-Specific Breakpoints
	Breakpoints for Multiple Processes
	Figure�78.� Action Point Options Dialog Box

	Breakpoint for Programs that fork()/execve()
	Processes That Call fork()
	Processes That Call execve()

	Example: Multiprocess Breakpoint
	Table�14.� Setting Breakpoints in Multiprocess Pro...


	Process Barrier Breakpoints
	Process Barrier Breakpoint States
	Setting a Process Barrier Breakpoint
	Figure�79.� Action Point Options Dialog Box
	Figure�80.� Process Barrier Breakpoint in Process ...

	Releasing Processes from Process Barrier Points
	Toggling Between a Breakpoint and a Process Barrie...
	Deleting a Process Barrier Point
	Changes when Setting and Clearing a Barrier Point

	Defining Evaluation Points
	Setting Evaluation Points
	Setting Conditional Breakpoints
	Patching Programs
	Conditionally Patching Out Code
	Patching In a Function Call
	Correcting Code

	Interpreted vs. Compiled Expressions
	Interpreted expressions
	Compiled expressions
	Figure�81.� Stopped Execution of Compiled Expressi...



	Defining and Using Event Points
	Controlling Action Points
	Displaying the Action Points Window
	Figure�82.� Action Points Window

	Displaying the Action Point Options Dialog
	Figure�83.� Action Point Options Dialog Box

	Commands for Controlling Action Points
	Table�15.� Clearing, Disabling, Enabling, Suppress...


	Saving Action Points in a File
	Evaluating Expressions
	Figure�84.� Sample Expression Window

	Writing Code Fragments
	Intrinsic Variables
	Table�16.� Intrinsic Variables�

	Built-In Statements
	Table�17.� Built-In Statements That Can Be Used in...

	C Constructs Supported
	Syntax
	Data Types and Declarations
	Statements

	Fortran Constructs Supported
	Syntax
	Data Types and Declarations
	Statements

	Writing Assembler Code
	Figure�85.� ASM Button in Expression Window
	Table�18.� TotalView Assembler Operators (Continue...
	Table�19.� TotalView Assembler Pseudo Ops (Continu...



	CHAPTER 9: Visualizing Data
	How the Visualizer Works
	Figure�86.� TotalView Visualizer Connection
	Figure�87.� TotalView Visualizer Relationships

	Configuring TotalView to Launch the Visualizer
	Figure�88.� The Visualizer Launch Window

	Data Types that TotalView Can Visualize
	Figure�89.� A Three Dimensional Array Sliced to Tw...

	Visualizing Data from the Variable Window
	Figure�90.� Variable Window

	Visualizing Data in Expressions
	Table�20.� $visualize examples for C and Fortran�
	Visualizer Animation

	The TotalView Visualizer ��
	Figure�91.� Visualizer Windows
	Directory Window
	Figure�92.� Sample Visualizer Directory Window
	Table�21.� Directory Window Menu Commands� �

	Data Windows
	Figure�93.� Sample Visualizer Data Windows
	Table�22.� Data Window Menu Commands�


	Views of Data
	Graph Data Window
	Figure�94.� Visualizer Graph Data Window
	Displaying Graphs
	Table�23.� Graph Data Window Options Dialog�

	Manipulating Graphs
	Table�24.� Graph Data Window Manipulations (Contin...
	Figure�95.� Display of Random Data


	Surface Data Window�
	Figure�96.� Two Dimensional Surface Visualizer Dat...
	Figure�97.� Three Dimensional Surface Visualizer D...
	Displaying Surface Data
	Table�25.� Surface Data Window Options�
	Table�26.� Surface Data Window Menu Commands�

	Manipulating Surface Data
	Table�27.� Surface Data Window Manipulations � (Co...



	Launching the Visualizer from Command Line�
	Adapting a Third Party Visualizer to the TotalView...
	Table�28.� Data-Set Header Fields (Continued)


	CHAPTER 10: Troubleshooting
	Table�29.� Symptoms and Solutions (Continued)

	CHAPTER 11: X Resources
	TotalView X Resources
	Window Locations

	Visualizer X Resources

	CHAPTER 12: TotalView Command Syntax
	Synopsis
	Description
	Arguments
	Options
	Table�30.� C++ Demangling Command Line Options� (C...


	CHAPTER 13: TotalView Debugger Server Command Synt...
	Options

	APPENDIX A: Compilers and Environments
	Supported Compilers and Environments
	AIX on RS/6000 Systems
	Table�31.� Supported Compilers and Environments on...

	Digital UNIX on Digital Alpha Systems
	Table�32.� Supported Compilers and Environments on...

	IRIX on SGI MIPS Systems
	Table�33.� Supported Compilers and Environments on...

	SunOS 4 on Solaris Systems
	Table�34.� Supported Compilers and Environments on...

	SunOS 5 on SPARC Solaris Systems
	Table�35.� Supported Compilers and Environments on...

	SunOS 5 on Intel-x86 Solaris Systems
	Table�36.� Supported Compilers and Environments on...


	Compiling with Debugging Symbols
	AIX on RS/6000 Systems
	Table�37.� Compiling with Debugging Symbols on AIX...

	Digital UNIX on Digital Alpha Systems
	Table�38.� Compiling with Debugging Symbols on Dig...

	IRIX on SGI MIPS Systems
	Table�39.� Compiling with Debugging Symbols on IRI...

	SunOS 4 on Solaris Systems
	Table�40.� Compiling with Debugging Symbols on Sun...

	SunOS 5 on SPARC or Intel- x86 Solaris Systems
	Table�41.� Compiling with Debugging Symbols on Sun...


	Compiling with Exception Data on Alpha Digital UNI...
	Linking with the dbfork Library
	AIX on RS/6000 Systems
	Linking C++ Programs with dbfork

	Alpha Digital UNIX
	SunOS 4
	SunOS 5 SPARC or Intel- x86
	IRIX6-MIPS


	APPENDIX B: Operating Systems
	Supported Operating Systems
	Mounting the /proc File System
	Digital UNIX, SunOS 5, and IRIX
	Table�42.� Commands for Determining Whether /proc ...

	Digital UNIX and SunOS 5
	Table�43.� Commands for Automatically Mounting /pr...

	IRIX

	Swap Space
	Digital UNIX
	AIX
	SunOS 4
	SunOS 5
	IRIX

	Shared Libraries
	Remapping Keys
	Expression System
	AIX
	Digital UNIX
	Expression on the Power


	APPENDIX C: Architectures
	Power
	Power General Registers
	Table�44.� Power General Purpose Integer Registers...

	Power MSR Register
	Table�45.� Power MSR Register Bit Settings (Contin...

	Power Floating- Point Registers
	Table�46.� Power Floating-Point Registers�

	Power FPSCR Register
	Table�47.� Power FPSCR Register Bit Settings (Cont...

	Using the Power FPSCR Register
	Power Floating- Point Format

	SPARC
	SPARC General Registers
	Table�48.� SPARC General Registers�

	SPARC PSR Register
	Table�49.� SPARC PSR Register Bit Settings�

	SPARC Floating-Point Registers
	Table�50.� SPARC Floating-Point Registers (Continu...

	SPARC FPSR Register
	Table�51.� SPARC FPSR Register Bit Settings (Conti...

	Using the SPARC FPSR Register
	SPARC Floating-Point Format

	Alpha
	Alpha General Registers
	Table�52.� Alpha General Purpose Integer Registers...

	Alpha Floating- Point Registers
	Table�53.� Alpha Floating-Point Registers�

	Alpha FPCR Register
	Table�54.� Alpha FPCR Register Bit Settings (Conti...

	Alpha Floating- Point Format

	MIPS
	MIPS General Registers
	Table�55.� MIPS General (Integer) Registers (Conti...

	MIPS SR Register
	Table�56.� MIPS SR Register Bit Settings (Continue...

	MIPS Floating- Point Registers
	Table�57.� MIPS Floating-Point Registers �

	MIPS FCSR Register
	Table�58.� MIPS FCSR Register Bit Settings (Contin...

	Using the MIPS FCSR Register
	MIPS Floating- Point Format
	MIPS Delay Slot Instructions

	Intel-x86
	Intel-x86 General Registers
	Table�59.� Intel-x86 General Registers (Continued)...

	Intel-x86 Floating-Point Registers
	Table�60.� Intel-x86 Floating-Point Registers (Con...

	Intel-x86 FPCR Register
	Table�61.� Intel-x86 FPCR Register Bit Settings (C...

	Using the Intel- x86 FPCR Register
	Intel-x86 FPSR Register
	Table�62.� Intel-x86 FPSR Register Bit Settings (C...

	Intel-x86 Floating-Point Format


	Glossary
	Index

